@article{KYB_2000_36_3_a3,
author = {Klotz, Lutz},
title = {An interpolation problem for multivariate stationary sequences},
journal = {Kybernetika},
pages = {321--327},
year = {2000},
volume = {36},
number = {3},
mrnumber = {1773507},
zbl = {1243.62124},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a3/}
}
Klotz, Lutz. An interpolation problem for multivariate stationary sequences. Kybernetika, Tome 36 (2000) no. 3, pp. 321-327. http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a3/
[1] Budinský P.: Improvement of interpolation under additional information. In: Proceedings of the 4th Prague Symposium on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1989, pp. 159–167 | MR | Zbl
[2] Makagon A.: Interpolation error operator for Hilbert space valued stationary stochastic processes. Probab. Math. Statist. 4 (1984), 57–65 | MR | Zbl
[3] Makagon A., Weron A.: $q$-variate minimal stationary processes. Studia Math. 59 (1976), 41–52 | MR | Zbl
[4] Pringle R. M., Rayner A. A.: Generalized Inverse Matrices with Applications to Statistics. Griffin, London 1971 | MR | Zbl
[5] Rozanov, Yu. A.: Stationary Random Processes (in Russian). Fizmatgiz, Moscow 1963
[6] Salehi H.: The Hellinger square–integrability of matrix–valued measures with respect to a non–negative hermitian measure. Ark. Mat. 7 (1967), 299–303 | DOI | MR
[7] Salehi H.: Application of the Hellinger integrals to $q$-variate stationary stochastic processes. Ark. Mat. 7 (1967), 305–311 | DOI | MR
[8] Weron A.: On characterizations of interpolable and minimal stationary processes. Studia Math. 49 (1974), 165–183 | MR | Zbl