An interpolation problem for multivariate stationary sequences
Kybernetika, Tome 36 (2000) no. 3, pp. 321-327 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let {\boldmath$X$} and {\boldmath$Y$} be stationarily cross-correlated multivariate stationary sequences. Assume that all values of {\boldmath$Y$} and all but one values of {\boldmath$X$} are known. We determine the best linear interpolation of the unknown value on the basis of the known values and derive a formula for the interpolation error matrix. Our assertions generalize a result of Budinský [1].
Let {\boldmath$X$} and {\boldmath$Y$} be stationarily cross-correlated multivariate stationary sequences. Assume that all values of {\boldmath$Y$} and all but one values of {\boldmath$X$} are known. We determine the best linear interpolation of the unknown value on the basis of the known values and derive a formula for the interpolation error matrix. Our assertions generalize a result of Budinský [1].
Classification : 60G10, 60G25, 62H20, 62M20, 62M99
Keywords: linear interpolation
@article{KYB_2000_36_3_a3,
     author = {Klotz, Lutz},
     title = {An interpolation problem for multivariate stationary sequences},
     journal = {Kybernetika},
     pages = {321--327},
     year = {2000},
     volume = {36},
     number = {3},
     mrnumber = {1773507},
     zbl = {1243.62124},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a3/}
}
TY  - JOUR
AU  - Klotz, Lutz
TI  - An interpolation problem for multivariate stationary sequences
JO  - Kybernetika
PY  - 2000
SP  - 321
EP  - 327
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a3/
LA  - en
ID  - KYB_2000_36_3_a3
ER  - 
%0 Journal Article
%A Klotz, Lutz
%T An interpolation problem for multivariate stationary sequences
%J Kybernetika
%D 2000
%P 321-327
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a3/
%G en
%F KYB_2000_36_3_a3
Klotz, Lutz. An interpolation problem for multivariate stationary sequences. Kybernetika, Tome 36 (2000) no. 3, pp. 321-327. http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a3/

[1] Budinský P.: Improvement of interpolation under additional information. In: Proceedings of the 4th Prague Symposium on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1989, pp. 159–167 | MR | Zbl

[2] Makagon A.: Interpolation error operator for Hilbert space valued stationary stochastic processes. Probab. Math. Statist. 4 (1984), 57–65 | MR | Zbl

[3] Makagon A., Weron A.: $q$-variate minimal stationary processes. Studia Math. 59 (1976), 41–52 | MR | Zbl

[4] Pringle R. M., Rayner A. A.: Generalized Inverse Matrices with Applications to Statistics. Griffin, London 1971 | MR | Zbl

[5] Rozanov, Yu. A.: Stationary Random Processes (in Russian). Fizmatgiz, Moscow 1963

[6] Salehi H.: The Hellinger square–integrability of matrix–valued measures with respect to a non–negative hermitian measure. Ark. Mat. 7 (1967), 299–303 | DOI | MR

[7] Salehi H.: Application of the Hellinger integrals to $q$-variate stationary stochastic processes. Ark. Mat. 7 (1967), 305–311 | DOI | MR

[8] Weron A.: On characterizations of interpolable and minimal stationary processes. Studia Math. 49 (1974), 165–183 | MR | Zbl