On calculation of stationary density of autoregressive processes
Kybernetika, Tome 36 (2000) no. 3, pp. 311-319 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.
An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.
Classification : 60G10, 62M10, 65C60
Keywords: AR(1) model; AR(2) model
@article{KYB_2000_36_3_a2,
     author = {And\v{e}l, Ji\v{r}{\'\i} and Hrach, Karel},
     title = {On calculation of stationary density of autoregressive processes},
     journal = {Kybernetika},
     pages = {311--319},
     year = {2000},
     volume = {36},
     number = {3},
     mrnumber = {1773506},
     zbl = {1248.62141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a2/}
}
TY  - JOUR
AU  - Anděl, Jiří
AU  - Hrach, Karel
TI  - On calculation of stationary density of autoregressive processes
JO  - Kybernetika
PY  - 2000
SP  - 311
EP  - 319
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a2/
LA  - en
ID  - KYB_2000_36_3_a2
ER  - 
%0 Journal Article
%A Anděl, Jiří
%A Hrach, Karel
%T On calculation of stationary density of autoregressive processes
%J Kybernetika
%D 2000
%P 311-319
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a2/
%G en
%F KYB_2000_36_3_a2
Anděl, Jiří; Hrach, Karel. On calculation of stationary density of autoregressive processes. Kybernetika, Tome 36 (2000) no. 3, pp. 311-319. http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a2/

[1] Anděl J.: Dependent random variables with a given marginal distribution. Acta Univ. Carolin. – Math. Phys. 24 (1983), 3–11 | MR

[2] Anděl J.: Marginal distributions of autoregressive processes. In: Trans. 9th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1983, pp. 127–135 | MR

[3] Anděl J.: On linear processes with given moments. J. Time Ser. Anal. 8 (1987), 373–378 | DOI | MR

[4] Anděl J.: AR(1) processes with given moments of marginal distribution. Kybernetika 22 (1989), 337–347 | MR | Zbl

[5] Anděl J., Bartoň T.: A note on the threshold AR(1) model with Cauchy innovations. J. Time Ser. Anal. 7 (1986), 1–5 | DOI | MR | Zbl

[6] Anděl J., Garrido M.: On stationary distributions of some time series models. In: Trans. 10th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1988, pp. 193–202 | MR

[7] Anděl J., Gómez M., Vega C.: Stationary distribution of some nonlinear AR(1) processes. Kybernetika 25 (1989), 453–460 | MR | Zbl

[8] Anděl J., Netuka I., Zvára K.: On threshold autoregressive processes. Kybernetika 20 (1984), 89–106 | MR | Zbl

[9] Bernier J.: Inventaire des modèles et processus stochastique applicables de la description des déluts journaliers des riviers. Rev. Inst. Internat. Statist. 38 (1970), 50–71 | DOI

[10] Davis R. A., Rosenblatt M.: Parameter estimation for some time series models without contiguity. Statist. Probab. Lett. 11 (1991), 515–521 | DOI | MR | Zbl

[11] Feller W.: An Introduction to Probability Theory and its Applications II. Wiley, New York 1966 | MR

[12] Gaver D. P., Lewis P. A. W.: First–order autoregressive gamma sequences and point processes. Adv. in Appl. Probab. 12 (1980), 727–745 | DOI | MR | Zbl

[13] Haiman G.: Upper and lower bounds for the tail of the invariant distribution of some AR(1) processes. In: Asymptotic Methods in Probability and Statistics (B. Szyszkowicz, ed.), North–Holland/Elsevier, Amsterdam 1998, pp. 723–730 | MR | Zbl

[14] Hamilton J. D.: Time Series Analysis. Princeton University Press, Princeton 1994 | MR | Zbl

[15] Loève M.: Probability Theory. Second edition. Van Nostrand, Princeton 1955 | MR | Zbl

[16] Rényi A.: Probability Theory. Akadémiai Kiadó, Budapest 1970

[17] Sondhi M. M.: Random processes with specified spectral density and first–order probability density. Bell System Technical J. 62 (1983), 679–701 | DOI

[18] Štěpán J.: Teorie pravděpodobnosti. Academia, Praha 1987

[19] Tong H.: Non–linear Time Series. Clarendon Press, Oxford 1990 | MR | Zbl

[20] Research, Wolfram, Inc.: Mathematica, Version 2. 2. Wolfram Research, Inc., Champaign, Illinois 1994