@article{KYB_2000_36_3_a2,
author = {And\v{e}l, Ji\v{r}{\'\i} and Hrach, Karel},
title = {On calculation of stationary density of autoregressive processes},
journal = {Kybernetika},
pages = {311--319},
year = {2000},
volume = {36},
number = {3},
mrnumber = {1773506},
zbl = {1248.62141},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a2/}
}
Anděl, Jiří; Hrach, Karel. On calculation of stationary density of autoregressive processes. Kybernetika, Tome 36 (2000) no. 3, pp. 311-319. http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a2/
[1] Anděl J.: Dependent random variables with a given marginal distribution. Acta Univ. Carolin. – Math. Phys. 24 (1983), 3–11 | MR
[2] Anděl J.: Marginal distributions of autoregressive processes. In: Trans. 9th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1983, pp. 127–135 | MR
[3] Anděl J.: On linear processes with given moments. J. Time Ser. Anal. 8 (1987), 373–378 | DOI | MR
[4] Anděl J.: AR(1) processes with given moments of marginal distribution. Kybernetika 22 (1989), 337–347 | MR | Zbl
[5] Anděl J., Bartoň T.: A note on the threshold AR(1) model with Cauchy innovations. J. Time Ser. Anal. 7 (1986), 1–5 | DOI | MR | Zbl
[6] Anděl J., Garrido M.: On stationary distributions of some time series models. In: Trans. 10th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1988, pp. 193–202 | MR
[7] Anděl J., Gómez M., Vega C.: Stationary distribution of some nonlinear AR(1) processes. Kybernetika 25 (1989), 453–460 | MR | Zbl
[8] Anděl J., Netuka I., Zvára K.: On threshold autoregressive processes. Kybernetika 20 (1984), 89–106 | MR | Zbl
[9] Bernier J.: Inventaire des modèles et processus stochastique applicables de la description des déluts journaliers des riviers. Rev. Inst. Internat. Statist. 38 (1970), 50–71 | DOI
[10] Davis R. A., Rosenblatt M.: Parameter estimation for some time series models without contiguity. Statist. Probab. Lett. 11 (1991), 515–521 | DOI | MR | Zbl
[11] Feller W.: An Introduction to Probability Theory and its Applications II. Wiley, New York 1966 | MR
[12] Gaver D. P., Lewis P. A. W.: First–order autoregressive gamma sequences and point processes. Adv. in Appl. Probab. 12 (1980), 727–745 | DOI | MR | Zbl
[13] Haiman G.: Upper and lower bounds for the tail of the invariant distribution of some AR(1) processes. In: Asymptotic Methods in Probability and Statistics (B. Szyszkowicz, ed.), North–Holland/Elsevier, Amsterdam 1998, pp. 723–730 | MR | Zbl
[14] Hamilton J. D.: Time Series Analysis. Princeton University Press, Princeton 1994 | MR | Zbl
[15] Loève M.: Probability Theory. Second edition. Van Nostrand, Princeton 1955 | MR | Zbl
[16] Rényi A.: Probability Theory. Akadémiai Kiadó, Budapest 1970
[17] Sondhi M. M.: Random processes with specified spectral density and first–order probability density. Bell System Technical J. 62 (1983), 679–701 | DOI
[18] Štěpán J.: Teorie pravděpodobnosti. Academia, Praha 1987
[19] Tong H.: Non–linear Time Series. Clarendon Press, Oxford 1990 | MR | Zbl
[20] Research, Wolfram, Inc.: Mathematica, Version 2. 2. Wolfram Research, Inc., Champaign, Illinois 1994