@article{KYB_2000_36_3_a1,
author = {Arteche, Josu},
title = {Gaussian semiparametric estimation in seasonal/cyclical long memory time series},
journal = {Kybernetika},
pages = {279--310},
year = {2000},
volume = {36},
number = {3},
mrnumber = {1773505},
zbl = {1248.62142},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a1/}
}
Arteche, Josu. Gaussian semiparametric estimation in seasonal/cyclical long memory time series. Kybernetika, Tome 36 (2000) no. 3, pp. 279-310. http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a1/
[1] Arteche J.: Log–periodogram regression in seasonal/cyclical long memory time series. Working Paper, Biltoki 98.17, University of the Basque Country, 1998
[2] Arteche J., Robinson P. M.: Seasonal and cyclical long memory. In: Asymptotics, Nonparametrics and Time Series (S. Ghosh, ed.), Marcel Dekker Inc., New York 1999, pp. 115–148 | MR | Zbl
[3] Brillinger D. R.: Time Series: Data Analysis and Theory. Holden–Day, San Francisco 1975 | MR | Zbl
[4] Carlin J. B., Dempster A. P.: Sensitivity analysis of seasonal adjustments: empirical case studies. J. Amer. Statist. Assoc. 84 (1989), 6–20 | DOI | MR
[5] Dahlhaus R.: Efficient parameter estimation for self-similar processes. Ann. Statist. 17 (1989), 1749–1766 | DOI | MR | Zbl
[6] Fox R., Taqqu M. S.: Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 (1986), 517–532 | DOI | MR | Zbl
[7] Geweke J., Porter–Hudak S.: The estimation and application of long–memory time series models. J. Time Ser. Anal. 4 (1983), 221–238 | DOI | MR | Zbl
[8] Giraitis L., Surgailis D.: A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle’s estimate. Probab. Theory Related Fields 86 (1990), 87–104 | DOI | MR
[9] Gray H. L., Zhang N. F., Woorward W. A.: On generalized fractional processes. J. Time Ser. Anal. 10 (1989), 233–257 | DOI | MR
[10] Hall P., Heyde C. C.: Martingale Limit Theory and its Application in Probability and Mathematical Statistics. Academic Press, New York 1980 | MR
[11] Hassler U.: (Mis)specification of long-memory in seasonal time series. J. Time Ser. Anal. 15 (1994), 19–30 | DOI | MR | Zbl
[12] Heyde C. C., Gay R.: Smoothed periodogram asymptotics and estimation for processes and fields with possible long–range dependence. Stoch. Process. Appl. 45 (1993), 169–182 | DOI | MR | Zbl
[13] Heyde C. C., Seneta E.: Estimation theory for growth and immigration rates in multiplicative process. J. Appl. Probab. 9 (1972), 235–256 | DOI | MR
[14] Jonas A. J.: Persistent Memory Random Processes. Ph.D. Thesis. Department of Statistics, Harvard University, 1983
[15] Kunsch H. R.: Statistical aspects of self-similar processes. In: Proc. First World Congress Bernoulli Soc. (Yu. Prohorov and V. V. Sazanov, eds.), VNU Science Press, Utrecht, 1 (1987), 67–74
[16] Robinson P. M.: Efficient tests of non-stationary hypothesis. J. Amer. Statist. Assoc. 89 (1994), 1420–1437 | DOI | MR
[17] Robinson P. M.: Log–periodogram regression of time series with long-range dependence. Ann. Statist. 23 (1995), 3, 1048–1072 | DOI | MR | Zbl
[18] Robinson P. M.: Gaussian semiparametric estimation of long–range dependence. Ann. Statist. 23 (1995), 1630–1661 | DOI | MR | Zbl
[19] Whittle P.: Estimation and information in stationary time series. Ark. Mat. 2 (1953), 423–434 | DOI | MR | Zbl
[20] Zygmund A.: Trigonometric Series. Cambridge University Press, Cambridge, UK 1977 | MR | Zbl