Gaussian semiparametric estimation in seasonal/cyclical long memory time series
Kybernetika, Tome 36 (2000) no. 3, pp. 279-310 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Gaussian semiparametric or local Whittle estimation of the memory parameter in standard long memory processes was proposed by Robinson [18]. This technique shows several advantages over the popular log- periodogram regression introduced by Geweke and Porter–Hudak [7]. In particular under milder assumptions than those needed in the log periodogram regression it is asymptotically more efficient. We analyse the asymptotic behaviour of the Gaussian semiparametric estimate of the memory parameter in seasonal or cyclical long memory processes allowing for asymmetric spectral divergences or zeros. Consistency and asymptotic normality are obtained.
Gaussian semiparametric or local Whittle estimation of the memory parameter in standard long memory processes was proposed by Robinson [18]. This technique shows several advantages over the popular log- periodogram regression introduced by Geweke and Porter–Hudak [7]. In particular under milder assumptions than those needed in the log periodogram regression it is asymptotically more efficient. We analyse the asymptotic behaviour of the Gaussian semiparametric estimate of the memory parameter in seasonal or cyclical long memory processes allowing for asymmetric spectral divergences or zeros. Consistency and asymptotic normality are obtained.
Classification : 62G05, 62G08, 62G20, 62M10
@article{KYB_2000_36_3_a1,
     author = {Arteche, Josu},
     title = {Gaussian semiparametric estimation in seasonal/cyclical long memory time series},
     journal = {Kybernetika},
     pages = {279--310},
     year = {2000},
     volume = {36},
     number = {3},
     mrnumber = {1773505},
     zbl = {1248.62142},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a1/}
}
TY  - JOUR
AU  - Arteche, Josu
TI  - Gaussian semiparametric estimation in seasonal/cyclical long memory time series
JO  - Kybernetika
PY  - 2000
SP  - 279
EP  - 310
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a1/
LA  - en
ID  - KYB_2000_36_3_a1
ER  - 
%0 Journal Article
%A Arteche, Josu
%T Gaussian semiparametric estimation in seasonal/cyclical long memory time series
%J Kybernetika
%D 2000
%P 279-310
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a1/
%G en
%F KYB_2000_36_3_a1
Arteche, Josu. Gaussian semiparametric estimation in seasonal/cyclical long memory time series. Kybernetika, Tome 36 (2000) no. 3, pp. 279-310. http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a1/

[1] Arteche J.: Log–periodogram regression in seasonal/cyclical long memory time series. Working Paper, Biltoki 98.17, University of the Basque Country, 1998

[2] Arteche J., Robinson P. M.: Seasonal and cyclical long memory. In: Asymptotics, Nonparametrics and Time Series (S. Ghosh, ed.), Marcel Dekker Inc., New York 1999, pp. 115–148 | MR | Zbl

[3] Brillinger D. R.: Time Series: Data Analysis and Theory. Holden–Day, San Francisco 1975 | MR | Zbl

[4] Carlin J. B., Dempster A. P.: Sensitivity analysis of seasonal adjustments: empirical case studies. J. Amer. Statist. Assoc. 84 (1989), 6–20 | DOI | MR

[5] Dahlhaus R.: Efficient parameter estimation for self-similar processes. Ann. Statist. 17 (1989), 1749–1766 | DOI | MR | Zbl

[6] Fox R., Taqqu M. S.: Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 (1986), 517–532 | DOI | MR | Zbl

[7] Geweke J., Porter–Hudak S.: The estimation and application of long–memory time series models. J. Time Ser. Anal. 4 (1983), 221–238 | DOI | MR | Zbl

[8] Giraitis L., Surgailis D.: A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle’s estimate. Probab. Theory Related Fields 86 (1990), 87–104 | DOI | MR

[9] Gray H. L., Zhang N. F., Woorward W. A.: On generalized fractional processes. J. Time Ser. Anal. 10 (1989), 233–257 | DOI | MR

[10] Hall P., Heyde C. C.: Martingale Limit Theory and its Application in Probability and Mathematical Statistics. Academic Press, New York 1980 | MR

[11] Hassler U.: (Mis)specification of long-memory in seasonal time series. J. Time Ser. Anal. 15 (1994), 19–30 | DOI | MR | Zbl

[12] Heyde C. C., Gay R.: Smoothed periodogram asymptotics and estimation for processes and fields with possible long–range dependence. Stoch. Process. Appl. 45 (1993), 169–182 | DOI | MR | Zbl

[13] Heyde C. C., Seneta E.: Estimation theory for growth and immigration rates in multiplicative process. J. Appl. Probab. 9 (1972), 235–256 | DOI | MR

[14] Jonas A. J.: Persistent Memory Random Processes. Ph.D. Thesis. Department of Statistics, Harvard University, 1983

[15] Kunsch H. R.: Statistical aspects of self-similar processes. In: Proc. First World Congress Bernoulli Soc. (Yu. Prohorov and V. V. Sazanov, eds.), VNU Science Press, Utrecht, 1 (1987), 67–74

[16] Robinson P. M.: Efficient tests of non-stationary hypothesis. J. Amer. Statist. Assoc. 89 (1994), 1420–1437 | DOI | MR

[17] Robinson P. M.: Log–periodogram regression of time series with long-range dependence. Ann. Statist. 23 (1995), 3, 1048–1072 | DOI | MR | Zbl

[18] Robinson P. M.: Gaussian semiparametric estimation of long–range dependence. Ann. Statist. 23 (1995), 1630–1661 | DOI | MR | Zbl

[19] Whittle P.: Estimation and information in stationary time series. Ark. Mat. 2 (1953), 423–434 | DOI | MR | Zbl

[20] Zygmund A.: Trigonometric Series. Cambridge University Press, Cambridge, UK 1977 | MR | Zbl