Keywords: periodic system; Riccati differential equation
@article{KYB_2000_36_2_a4,
author = {Colaneri, Patrizio},
title = {Continuous-time periodic systems in $H_2$ and $H_\infty$. {Part} {I:} {Theoretical} aspects},
journal = {Kybernetika},
pages = {211--242},
year = {2000},
volume = {36},
number = {2},
mrnumber = {1760025},
zbl = {1249.93097},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_2_a4/}
}
Colaneri, Patrizio. Continuous-time periodic systems in $H_2$ and $H_\infty$. Part I: Theoretical aspects. Kybernetika, Tome 36 (2000) no. 2, pp. 211-242. http://geodesic.mathdoc.fr/item/KYB_2000_36_2_a4/
[1] Bittanti S.: Deterministic and stochastic linear periodic systems. In: Time Series and Linear Systems (S. Bittanti, ed.), Springer Verlag, Berlin 1986, pp. 141–182 | MR
[2] Bittanti S., Colaneri P., Nicolao G. De: The periodic Riccati equation. In: The Riccati equation (S. Bittanti, A. J. Laub, J. C. Willems, eds.), Springer Verlag, Berlin 1990, pp. 127–162 | MR
[3] Bolzern P., Colaneri P.: The periodic Lyapunov equation. SIAM J. Matrix Analysis Appl. 4 (1998), 499–512 | MR
[4] Doyle J. C., Glover K., Khargonekaar P. P., Francis B. A.: State–space solutions to standard $H_2$ and $H_{\infty }$ control problems. IEEE Trans. Automat. Control 34 (1989), 831–846 | DOI | MR
[5] Mita T., Zhi L. Kang, Ohushi S.: Correction of the FI result in $H_\infty $ control and parametrization of $H_\infty $ state feedback controllers. IEEE Trans. Automat. Control 38 (1993), 343–347 | DOI | MR
[6] Colaneri P., Geromel J. C., Locatelli A.: Control Systems Design – a $H_2$ and $H_\infty $ Viewpoint. Academic Press, New York 1997
[7] Bamieh B., Pearson J. B.: A general framework for linear periodic systems with application to $H_\infty $ sampled-data control. IEEE Trans. Automat. Control 37 (1992), 418–435 | DOI | MR
[8] Colaneri P.: Hamiltonian systems and periodic Riccati equations in $H_2$ and $H_{\infty }$ analysis and control of linear periodic systems. In: Proc. 30th Conference on Decision and Control, Brighton 1991, pp. 1914–1919
[9] Shayman M. A.: On the phase portrait of the matrix Riccati equation arising from the periodic control problem. SIAM J. Control Optim. 23 (1985), 27–32 | DOI | MR | Zbl
[10] Xie L., Souza C. E. De, Fragoso M. D.: $H_{\infty }$ filtering for linear periodic systems with parameter uncertainty. Systems Control Lett. 17 (1991), 343–350 | DOI | MR
[11] Colaneri P., Souza C. De: The $H_\infty $ control problem for continuous-time linear periodic systems. In: Proc. of the $2^{\mathrm {nd}}$ IFAC Workshop on Systems Structure and Control, Prague 1992, pp. 292–295
[12] Limeeberg D. J., Anderson B. D. O., Khargonekar P. P., Green M.: A game theoretical approach to $H_\infty $ control of time-varying systems. SIAM J. Control Optim. 30 (1992), 262–283 | DOI | MR
[13] Ravi R., Nagpal K. M., Khargonekaar P. P.: $H_\infty $ control of linear time-varying systems: a state-space approach. SIAM J. Control Optim. 29 (1991), 1394–1413 | DOI | MR
[14] Chapellat H., Dahleh M., Bhattacharrya S. P.: Structure and optimality of multivariable periodic controllers. IEEE Trans. Automat. Control 38 (1993), 1300–1303 | DOI | MR | Zbl
[15] Feintuch A., Khargonekar P., Tannenbaum A.: On the minimization problem for linear time–varying periodic controller. SIAM J. Control Optim. (1986), 1076–1085 | DOI | MR
[16] Basar T., Bernhard P.: $H_\infty $ Optimal Control and Related Minimax Design Problems. Birkhäuser, Basel 1991 | MR
[17] Colaneri P.: Continuous–time periodic systems in $H_2$ and $H_{\infty }$ – Part II: State–feedback problems. Kybernetika 36 (2000), No. 3 (to appear) | MR