Keywords: discrete-time Markov control process; unbounded cost
@article{KYB_2000_36_2_a3,
author = {Gordienko, Evgueni I. and Salem, Francisco},
title = {Estimates of stability of {Markov} control processes with unbounded costs},
journal = {Kybernetika},
pages = {195--210},
year = {2000},
volume = {36},
number = {2},
mrnumber = {1760024},
zbl = {1249.93176},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_2_a3/}
}
Gordienko, Evgueni I.; Salem, Francisco. Estimates of stability of Markov control processes with unbounded costs. Kybernetika, Tome 36 (2000) no. 2, pp. 195-210. http://geodesic.mathdoc.fr/item/KYB_2000_36_2_a3/
[1] Dynkin E. B., Yushkevich A. A.: Controlled Markov Processes. Springer–Verlag, New York 1979 | MR
[4] Gordienko E., Hernández–Lerma O.: Average cost Markov control processes with weighted norms: exitence of canonical policies. Appl. Math. 23 (1995), 199–218 | MR
[5] Gordienko E., Hernández–Lerma O.: Average cost Markov control processes with weighted norms: value iteration. Appl. Math. 23 (1995), 219–237 | MR | Zbl
[6] Gordienko E. I., Isauro-Martínez M. E., Carrillo R. M. Marcos: Estimation of stability in controlled storage systems. Research Report No. 04.0405.I.01.001.97, Dep. de Matemáticas, Universidad Autónoma Metropolitana, México 1997
[7] Gordienko E. I., Salem F. S.: Robustness inequality for Markov control processes with unbounded costs. Systems Control Lett. 33 (1998), 125–130 | DOI | MR | Zbl
[8] Hernández-Lerma O., Lasserre J. B.: Average cost optimal policies for Markov control processes with Borel state space and unbounded costs. Systems Control Lett. 15 (1990), 349–356 | DOI | MR
[9] Hernández-Lerma O., Lassere J. B.: Discrete–time Markov Control Processes. Springer–Verlag, New York 1995
[10] Hinderer H.: Foundations of Non–Stationary Dynamic Programming with Discrete Time Parameter. (Lecture Notes in Operations Research 33.) Springer–Verlag, New York 1970 | MR | Zbl
[11] Kartashov N. V.: Inequalities in theorems of ergodicity and stability for Markov chains with common phase space. II. Theory Probab. Appl. 30 (1985), 507–515 | DOI
[12] Kumar P. R., Varaiya P.: Stochastic Systems: Estimation, Identification and Adaptive Control. Prentice–Hall, Englewood Cliffs, N. J. 1986 | Zbl
[13] Meyn S. P., Tweedie R. L.: Markov Chains and Stochastic Stability. Springer–Verlag, Berlin 1993 | MR | Zbl
[14] Nummelin E.: General Irreducible Markov Chains and Non–Negative Operators. Cambridge University Press, Cambridge 1984 | MR | Zbl
[15] Rachev S. T.: Probability Metrics and the Stability of Stochastic Models. Wiley, New York 1991 | MR | Zbl
[16] Scott D. J., Tweedie R. L.: Explicit rates of convergence of stochastically ordered Markov chains. In: Proc. Athens Conference of Applied Probability and Time Series Analysis: Papers in Honour of J. M. Gani and E. J. Hannan (C. C. Heyde, Yu. V. Prohorov, R. Pyke and S. T. Rachev, eds.). Springer–Verlag, New York 1995, pp. 176–191 | MR
[17] Dijk N. M. Van: Perturbation theory for unbounded Markov reward processes with applications to queueing. Adv. in Appl. Probab. 20 (1988), 99–111 | DOI | MR
[18] Dijk N. M. Van, Puterman M. L.: Perturbation theory for Markov reward processes with applications to queueing systems. Adv. in Appl. Probab. 20 (1988), 79–98 | DOI | MR
[19] Weber R. R., jr. S. Stidham: Optimal control of service rates in networks of queues. Adv. in Appl. Probab. 19 (1987), 202–218 | DOI | MR | Zbl
[20] Whitt W.: Approximations of dynamic programs I. Math. Oper. Res. 3 (1978), 231–243 | DOI | MR | Zbl
[21] Zolotarev V. M.: On stochastic continuity of queueing systems of type $G\vert G\vert 1$. Theory Probab. Appl. 21 (1976), 250–269 | MR