The structure of nonlinear time delay systems
Kybernetika, Tome 36 (2000) no. 1, pp. 53-62 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Multivariable nonlinear systems with time delays are considered. The delays are supposed to be constant but not commensurate. The goal of this paper is to give a structure algorithm which displays some system invariants for this class of systems.
Multivariable nonlinear systems with time delays are considered. The delays are supposed to be constant but not commensurate. The goal of this paper is to give a structure algorithm which displays some system invariants for this class of systems.
Classification : 93B11, 93C10, 93C35
Keywords: multivariable nonlinear system; time delay
@article{KYB_2000_36_1_a5,
     author = {M\'arquez-Mart{\'\i}nez, Luis A. and Moog, Claude H. and Velasco-Villa, Mart{\'\i}n},
     title = {The structure of nonlinear time delay systems},
     journal = {Kybernetika},
     pages = {53--62},
     year = {2000},
     volume = {36},
     number = {1},
     mrnumber = {1760888},
     zbl = {1249.93102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a5/}
}
TY  - JOUR
AU  - Márquez-Martínez, Luis A.
AU  - Moog, Claude H.
AU  - Velasco-Villa, Martín
TI  - The structure of nonlinear time delay systems
JO  - Kybernetika
PY  - 2000
SP  - 53
EP  - 62
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a5/
LA  - en
ID  - KYB_2000_36_1_a5
ER  - 
%0 Journal Article
%A Márquez-Martínez, Luis A.
%A Moog, Claude H.
%A Velasco-Villa, Martín
%T The structure of nonlinear time delay systems
%J Kybernetika
%D 2000
%P 53-62
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a5/
%G en
%F KYB_2000_36_1_a5
Márquez-Martínez, Luis A.; Moog, Claude H.; Velasco-Villa, Martín. The structure of nonlinear time delay systems. Kybernetika, Tome 36 (2000) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a5/

[1] Conte G., Moog C. H., Perdon A. M.: Nonlinear Control Systems: An Algebraic Setting. (Lecture Notes in Control and Information Sciences 242.) Springer–Verlag, London 1999 | MR | Zbl

[2] Conte G., Perdon A. M.: The disturbance decoupling problem for systems over a ring. SIAM J. Control Optim. 33 (1995), 750–764 | DOI | MR | Zbl

[3] Hale J.: Theory of Functional Differential Equations. Springer Verlag, New York 1977 | MR | Zbl

[4] Iwai Z., Seborg D. E., Fisher D. G., Kobayashi N.: Decoupling of linear time variant systems with time delays in the control variable or state variable. Internat. J. Control 28 (1978), 869–888 | DOI | MR

[5] Malabre M., Rabah R.: Structure at infinity, model matching, and disturbance rejection for linear systems with delays. Kybernetika 29 (1993), 485–498 | MR | Zbl

[6] Márquez–Martínez L. A., Moog C. H., Velasco–Villa M.: The structure of nonlinear time–delay systems. In: 6th IEEE MCCS. Sardinia 1998

[7] Moog C. H., Castro–Linares R., Velasco–Villa M., Márquez–Martínez L. A.: The disturbance decoupling problem for time–delay systems. IEEE Trans. Automat. Control. To appear

[8] Singh S. N.: A modified algorithm for invertibility in nonlinear systems. IEEE Trans. Automat. Control 14 (1981), 595–598 | DOI | MR | Zbl

[9] Tzafestas S. G., Paraskevopoulos P. N.: On the decoupling of multivariable control systems with time delay systems. Internat. J. Control 17 (1973), 2, 405–415 | DOI | MR

[10] Velasco–Villa M., Moog C. H.: Disturbance decoupling problem for time–delay nonlinear systems: dynamic approach. In: IFAC Conference on Control and Systems’s Structure. Nantes 1998