Input-output decoupling of nonlinear recursive systems
Kybernetika, Tome 36 (2000) no. 1, pp. 43-51 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The input-output decoupling problem is studied for a class of recursive nonlinear systems (RNSs), i. e. for systems, modelled by higher order nonlinear difference equations, relating the input, the output and a finite number of their time shifts. The solution of the problem via regular static feedback known for discrete-time nonlinear systems in state space form, is extended to RNSs. Necessary and sufficient conditions for local solvability of the problem are proposed. This is the alternative to be used when some nonlinear input-outpt models cannot be realized in the state-space form.
The input-output decoupling problem is studied for a class of recursive nonlinear systems (RNSs), i. e. for systems, modelled by higher order nonlinear difference equations, relating the input, the output and a finite number of their time shifts. The solution of the problem via regular static feedback known for discrete-time nonlinear systems in state space form, is extended to RNSs. Necessary and sufficient conditions for local solvability of the problem are proposed. This is the alternative to be used when some nonlinear input-outpt models cannot be realized in the state-space form.
Classification : 93B15, 93B25, 93C10, 93C55
Keywords: input-output decoupling problem; nonlinear input-output model
@article{KYB_2000_36_1_a4,
     author = {Kotta, \"Ulle},
     title = {Input-output decoupling of nonlinear recursive systems},
     journal = {Kybernetika},
     pages = {43--51},
     year = {2000},
     volume = {36},
     number = {1},
     mrnumber = {1760887},
     zbl = {1249.93037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a4/}
}
TY  - JOUR
AU  - Kotta, Ülle
TI  - Input-output decoupling of nonlinear recursive systems
JO  - Kybernetika
PY  - 2000
SP  - 43
EP  - 51
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a4/
LA  - en
ID  - KYB_2000_36_1_a4
ER  - 
%0 Journal Article
%A Kotta, Ülle
%T Input-output decoupling of nonlinear recursive systems
%J Kybernetika
%D 2000
%P 43-51
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a4/
%G en
%F KYB_2000_36_1_a4
Kotta, Ülle. Input-output decoupling of nonlinear recursive systems. Kybernetika, Tome 36 (2000) no. 1, pp. 43-51. http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a4/

[1] Bastin G., Jarachi F., Mareels I. M. Y.: Dead beat control of recursive nonlinear systems. In: Proc. of the 32nd Conference on Decision and Control, San Antonio 1993, pp. 2965–2971

[2] Chen S., Billings S. A.: Representation of non–linear systems: the NARMAX model. Internat. J. Control 49 (1989), 1013–1032 | DOI | MR

[3] Fliess M.: Automatique en temps discret et algèbre aux différences. Forum Math. 2 (1990), 213–232 | DOI | MR | Zbl

[4] Hammer J.: Nonlinear systems: stability and rationality. Internat. J. Control 40 (1984), 1–35 | DOI | MR

[5] Isidori A.: Nonlinear Control Systems. Second edition. Springer–Verlag, Berlin 1989 | MR | Zbl

[6] Kotta Ü.: Inversion Method in the Discrete–time Nonlinear Control Systems Synthesis Problems. Springer–Verlag, London 1995 | MR | Zbl

[7] Kotta Ü.: On right invertibility of recursive nonlinear systems. In: Proc. of the 13th IFAC World Congress, San Fransisco 1996 | MR

[8] Kotta Ü.: Model matching problem for nonlinear recursive systems. Proc. Estonian Acad. Sci. Phys. Math. 46 (1997), 251–261 | MR | Zbl

[9] Kotta Ü., Liu P., Zinober A. S. I.: State-space realization of input–output nonlinear difference equations. In: Proc. of European Control Conference, Brussels 1997, Paper N 851 (CD–ROM)

[10] Levin A. U., Narendra K. S.: Recursive identification using feedforward neural networks. Internat. J. Control 61 (1995), 533–547 | DOI | MR | Zbl

[11] Levin A. U., Narendra K. S.: Control of nonlinear dynamical systems using neural networks. Part 2: Observabiliy, identification, and control. IEEE Trans. Neural Networks 7 (1996), 30–42 | DOI

[12] Narendra K. S., Cabrera J. B. D.: Input–output representation of discrete–time dynamical systems – nonlinear ARMA models. In: Proc. of the 33rd Conference on Decision and Control, 1994, pp. 1118–1119

[13] Nijmeijer H., Schaft A. J. van der: Nonlinear Dynamical Control Systems. Springer–Verlag, New York 1990 | MR