Keywords: input-output decoupling problem; nonlinear input-output model
@article{KYB_2000_36_1_a4,
author = {Kotta, \"Ulle},
title = {Input-output decoupling of nonlinear recursive systems},
journal = {Kybernetika},
pages = {43--51},
year = {2000},
volume = {36},
number = {1},
mrnumber = {1760887},
zbl = {1249.93037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a4/}
}
Kotta, Ülle. Input-output decoupling of nonlinear recursive systems. Kybernetika, Tome 36 (2000) no. 1, pp. 43-51. http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a4/
[1] Bastin G., Jarachi F., Mareels I. M. Y.: Dead beat control of recursive nonlinear systems. In: Proc. of the 32nd Conference on Decision and Control, San Antonio 1993, pp. 2965–2971
[2] Chen S., Billings S. A.: Representation of non–linear systems: the NARMAX model. Internat. J. Control 49 (1989), 1013–1032 | DOI | MR
[3] Fliess M.: Automatique en temps discret et algèbre aux différences. Forum Math. 2 (1990), 213–232 | DOI | MR | Zbl
[4] Hammer J.: Nonlinear systems: stability and rationality. Internat. J. Control 40 (1984), 1–35 | DOI | MR
[5] Isidori A.: Nonlinear Control Systems. Second edition. Springer–Verlag, Berlin 1989 | MR | Zbl
[6] Kotta Ü.: Inversion Method in the Discrete–time Nonlinear Control Systems Synthesis Problems. Springer–Verlag, London 1995 | MR | Zbl
[7] Kotta Ü.: On right invertibility of recursive nonlinear systems. In: Proc. of the 13th IFAC World Congress, San Fransisco 1996 | MR
[8] Kotta Ü.: Model matching problem for nonlinear recursive systems. Proc. Estonian Acad. Sci. Phys. Math. 46 (1997), 251–261 | MR | Zbl
[9] Kotta Ü., Liu P., Zinober A. S. I.: State-space realization of input–output nonlinear difference equations. In: Proc. of European Control Conference, Brussels 1997, Paper N 851 (CD–ROM)
[10] Levin A. U., Narendra K. S.: Recursive identification using feedforward neural networks. Internat. J. Control 61 (1995), 533–547 | DOI | MR | Zbl
[11] Levin A. U., Narendra K. S.: Control of nonlinear dynamical systems using neural networks. Part 2: Observabiliy, identification, and control. IEEE Trans. Neural Networks 7 (1996), 30–42 | DOI
[12] Narendra K. S., Cabrera J. B. D.: Input–output representation of discrete–time dynamical systems – nonlinear ARMA models. In: Proc. of the 33rd Conference on Decision and Control, 1994, pp. 1118–1119
[13] Nijmeijer H., Schaft A. J. van der: Nonlinear Dynamical Control Systems. Springer–Verlag, New York 1990 | MR