Keywords: nonlinear delay system; state delayed feedback
@article{KYB_2000_36_1_a3,
author = {Germani, Alfredo and Manes, Costanzo and Pepe, Pierdomenico},
title = {Local asymptotic stability for nonlinear state feedback delay systems},
journal = {Kybernetika},
pages = {31--42},
year = {2000},
volume = {36},
number = {1},
mrnumber = {1760886},
zbl = {1249.93146},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a3/}
}
Germani, Alfredo; Manes, Costanzo; Pepe, Pierdomenico. Local asymptotic stability for nonlinear state feedback delay systems. Kybernetika, Tome 36 (2000) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a3/
[1] Banks H. T., Kappel F.: Spline approximations for functional differential equations. J. Differential Equations 34 (1979), 496–522 | DOI | MR | Zbl
[2] Bensoussan A., Prato G. Da, Delfour M. C., Mitter S. K.: Representation and Control of Infinite Dimensional Systems. Birkhäuser, Boston 1992 | MR | Zbl
[3] Germani A., Manes C., Pepe P.: Numerical solution for optimal regulation of stochastic hereditary systems with multiple discrete delays. In: Proc. of 34th IEEE Conference on Decision and Control, Louisiana 1995. Vol. 2, pp. 1497–1502
[4] Germani A., Manes C., Pepe P.: Linearization of input–output mapping for nonlinear delay systems via static state feedback. In: Proc. of CESA IMACS Multiconference on Computational Engineering in Systems Applications, Lille 1996, Vol. 1, pp. 599–602
[5] Germani A., Manes C., Pepe P.: Linearization and decoupling of nonlinear delay systems. In: Proc. of 1998 American Control Conference, ACC’98, Philadelphia 1998, Vol. 3, pp. 1948–1952
[6] Germani A., Manes C., Pepe P.: Tracking, model matching, disturbance decoupling for a class of nonlinear delay systems. In: Proc. of Large Scale Systems IFAC Conference, LSS’98, Patrasso 1998, Vol. 1, pp. 423–429
[7] Germani A., Manes C., Pepe P.: A state observer for nonlinear delay systems. In: Proc. of 37th IEEE Conference on Decision and Control, Tampa 1998
[8] Gibson J. S.: Linear quadratic optimal control of hereditary differential systems: Infinite–dimensional Riccati equations and numerical approximations. SIAM J. Control Optim. 31 (1983), 95–139 | DOI | MR | Zbl
[9] Isidori A.: Nonlinear Control Systems. Third edition. Springer–Verlag, London 1995 | MR | Zbl
[10] Lehman B., Bentsman J., Lunel S. V., Verriest E. I.: Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory, stabilizability, and transient behavior. IEEE Trans. Automat. Control 5 (1994), 898–912 | DOI | MR | Zbl
[11] Marquez L. A., Moog C. H., Velasco M.: The structure of nonlinear time delay system. In: Proc. of 6th Mediterranean Conference on Control and Automation, Alghero 1998
[12] Moog C. H., Castro R., Velasco M.: The disturbance decoupling problem for nonlinear systems with multiple time–delays: Static state feedback solutions. In: Proc. of CESA IMACS Multiconference on Computational Engineering in Systems Applications, Vol. 1, pp. 596–598, Lille 1996
[13] Moog C. H., Castro R., Velasco M.: Bi–causal solutions to the disturbance decoupling problem for time–delay nonlinear systems. In: Proc. of 36th IEEE Conference on Decision and Control, Vol. 2, pp. 1621–1622, San Diego, 1997
[14] Pandolfi L.: The standard regulator problem for systems with input delays. An approach through singular control theory. Appl. Math. Optim. 31 (1995), 2, 119–136 | DOI | MR | Zbl
[15] Pepe P.: Il Controllo LQG dei Sistemi con Ritardo. PhD Thesis, Department of Electrical Engineering, L’Aquila 1996
[16] Wu J. W., Hong K.-S.: Delay–independent exponential stability criteria for time–varying discrete delay systems. IEEE Trans. Automat. Control 39 (1994), 4, 811–814 | DOI | MR | Zbl