Keywords: quadratic stability of uncertain systems; zero input system
@article{KYB_2000_36_1_a2,
author = {Amato, Francesco},
title = {Stability analysis and synthesis of systems subject to norm bounded, bounded rate uncertainties},
journal = {Kybernetika},
pages = {21--29},
year = {2000},
volume = {36},
number = {1},
mrnumber = {1760885},
zbl = {1249.93137},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a2/}
}
Amato, Francesco. Stability analysis and synthesis of systems subject to norm bounded, bounded rate uncertainties. Kybernetika, Tome 36 (2000) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a2/
[1] Amato F.: Stability analysis of systems subject to norm bounded, bounded rate uncertainties. In: Proc. of the 6th IEEE Mediterranean Conference on Control and Automation, Alghero 1998
[2] Amato F., Corless M., Mattei M., Setola R.: A robust stability margin in the presence of time varying, bounded rate gains. Internat. J. Robust and Nonlinear Control 7 (1997), 127–143 | DOI | MR
[3] Barmish B. R.: Stabilization of uncertain systems via linear control. IEEE Trans. Automat. Control AC-28 (1983), 848–850 | DOI | MR | Zbl
[4] Boyd S., Ghaoui L. El, Feron E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM Press, 1994 | MR | Zbl
[5] Corless M.: Robust stability analysis and controller design with quadratic Lyapunov functions. In: Variable Structure and Lyapunov Control (A. S. I. Zinober, ed.), Springer–Verlag, Berlin 1993 | Zbl
[6] Ghaoui L. El, Balakrishnan V.: Synthesis of fixed–structure controllers via numerical optimization. In: Proc. of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista 1994, pp. 2678–2683
[7] Geromel J. C., Peres P. L. D., Bernussou J.: On a convex parameter space method for linear control design of uncertain systems. SIAM J. Control Optim. 29 (1991), 381–402 | DOI | MR | Zbl
[8] Hinrichsen D., Pritchard A. J.: Stability radii of linear systems. Systems Control Lett. 7 (1986), 1–10 | DOI | MR | Zbl
[9] Narendra K. S., Taylor J. H.: Frequency Domain Criteria for Absolute Stability. Academic Press, New York 1973 | MR | Zbl
[10] Safonov M. G., Goh K. C., Ly J. H.: Control System synthesis via bilinear matrix inequalities. In: Proc. of the American Control Conference, Baltimore 1994, pp. 45–49