On generalized Popov theory for delay systems
Kybernetika, Tome 36 (2000) no. 1, pp. 2-20 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper focuses on the Popov generalized theory for a class of some linear systems including discrete and distributed delays. Sufficient conditions for stabilizing such systems as well as for coerciveness of an appropriate quadratic cost are developed. The obtained results are applied for the design of a memoryless state feedback control law which guarantees the (exponential) closed-loop stability with an ${\cal L}_2$ norm bound constraint on disturbance attenuation. Note that the proposed results extend similar ones proposed by some of the authors [inddl:98].
This paper focuses on the Popov generalized theory for a class of some linear systems including discrete and distributed delays. Sufficient conditions for stabilizing such systems as well as for coerciveness of an appropriate quadratic cost are developed. The obtained results are applied for the design of a memoryless state feedback control law which guarantees the (exponential) closed-loop stability with an ${\cal L}_2$ norm bound constraint on disturbance attenuation. Note that the proposed results extend similar ones proposed by some of the authors [inddl:98].
Classification : 93B36, 93B52, 93C05, 93C23, 93D05, 93D10, 93D15
Keywords: Popov generalized theory; delay system; memoryless state feedback control
@article{KYB_2000_36_1_a1,
     author = {Niculescu, S. I. and Ionescu, V. and Iv\u{a}nescu, D. and Dugard, L. and Dion, J.-M.},
     title = {On generalized {Popov} theory for delay systems},
     journal = {Kybernetika},
     pages = {2--20},
     year = {2000},
     volume = {36},
     number = {1},
     mrnumber = {1760884},
     zbl = {1249.93141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a1/}
}
TY  - JOUR
AU  - Niculescu, S. I.
AU  - Ionescu, V.
AU  - Ivănescu, D.
AU  - Dugard, L.
AU  - Dion, J.-M.
TI  - On generalized Popov theory for delay systems
JO  - Kybernetika
PY  - 2000
SP  - 2
EP  - 20
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a1/
LA  - en
ID  - KYB_2000_36_1_a1
ER  - 
%0 Journal Article
%A Niculescu, S. I.
%A Ionescu, V.
%A Ivănescu, D.
%A Dugard, L.
%A Dion, J.-M.
%T On generalized Popov theory for delay systems
%J Kybernetika
%D 2000
%P 2-20
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a1/
%G en
%F KYB_2000_36_1_a1
Niculescu, S. I.; Ionescu, V.; Ivănescu, D.; Dugard, L.; Dion, J.-M. On generalized Popov theory for delay systems. Kybernetika, Tome 36 (2000) no. 1, pp. 2-20. http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a1/

[1] Boyd S., Ghaoui L. El, Feron E., Balakrishnan V.: Linear matrix inequalities in system and control theory. (SIAM Stud. Appl. Math. 15.) SIAM Publication, Philadelphia 1994 | MR | Zbl

[2] Dugard L., (eds.) E. I. Verriest: Stability and Control of Time–delay Systems. (Lecture Notes in Control and Inform. Sciences 228.) Springer–Verlag, London 1997 | MR | Zbl

[3] Doyle J. C., Glover K., Khargonekar P. P., Francis B. A.: State–space solutions to standard $H_2$ and $H_\infty $ control problems. IEEE Trans. Automat. Control 34 (1989), 831–847 | DOI | MR

[4] Halanay A., Ionescu V.: Generalized discrete–time Popov–Yakubovich theory. Systems Control Lett. 20 (1993), 1–6 | DOI | MR | Zbl

[5] Halanay A., Ionescu V.: Time–Varying Discrete Linear Systems. Birkhäuser, Basel 1994 | MR | Zbl

[6] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations (Appl. Math. Sciences 99.), Springer–Verlag, Berlin 1991

[7] Ionescu V., Weiss M.: Continuous and discrete-time Riccati theory: a Popov function approach. Linear Algebra Appl. 193 (1993), 173–209 | MR

[8] Ionescu V., Oară C., Weiss M.: Generalized Riccati Theory. Wiley, New York 1998 | Zbl

[9] Ionescu V., Niculescu S. I., Woerdeman H.: On ${\mathcal L}_2$ memoryless control of time–delay systems. In: Proc. 36th IEEE Conf. Decision Control, San Diego 1997

[10] Ionescu V., Niculescu S. I., Dion J. M., Dugard L., Li H.: Generalized Popov theory applied to state–delayed systems. In: Proc. 4th IFAC Conf. System Structure and Control, Nantes 1998 | Zbl

[11] Ionescu V., Niculescu S. I., Dion J. M., Dugard L., Li H.: Generalized Popov theory applied to state–delayed systems. In: Proc. 4th IFAC Conf. System Structure Control, Nantes 1998 | Zbl

[12] Kolmanovskii V. B., Myshkis A.: Applied Theory of Functional Differential Equations. Kluwer, Dordrecht 1992 | MR

[13] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equations. Math. Science Engrg. 180, Academic Press, New York 1986 | MR | Zbl

[14] Kolmanovskii V. B., Richard J. P.: Stability of some systems with distributed delays. European J. Automat. Control 31 (1997), 971–982

[15] Kolmanovskii V. B., Richard J. P., Tchangani A. Ph.: Stability of linear systems with discrete–plus–distributed delays: Application to some model transformations. In: Mathematical Theory of Networks and Systems (MTNS’98), Padova 1998

[16] Lee J. H., Kim S. W., Kwon W. H.: Memoryless $H_\infty $ controllers for state delayed systems. IEEE Trans. Automat. Control 39 (1994), 159–162 | DOI | MR

[17] Li H., Niculescu S. I., Dugard L., Dion J. M.: Robust ${\mathcal H}_\infty $ control for uncertain linear time–delay systems: A linear matrix inequality approach. Part I. In: Proc. 35th IEEE Conf. Decision Control, Kobe 1996

[18] Li H., Niculescu S. I., Dugard L., Dion J. M.: Robust ${\mathcal H}_\infty $ control for uncertain linear time–delay systems: A linear matrix inequality approach with guaranteed $\alpha $-stability. Part II. In: Proc. 35th IEEE Conf. Decision Control, Kobe 1996

[19] Niculescu S. I.: ${\mathcal H}_\infty $ memoryless control with an $\alpha $-stability constraint for time–delay systems: An LMI approach. IEEE Trans. Automat. Control 43 (1998), 739–743 | DOI | MR

[20] Niculescu S. I.: Time–delay systems. Qualitative aspects on stability and stabilization (in French), Diderot Eds., ‘Nouveaux Essais’ Series, Paris 1997 | Zbl

[21] Niculescu S. I., Ionescu V.: On delay–independent stability criteria: A matrix pencil approach. IMA J. Math. Control Inform. 1997 | MR | Zbl

[22] Niculescu S. I., Souza C. E. de, Dion J. M., Dugard L.: Robust ${\mathcal H}_\infty $ memoryless control for uncertain linear systems with time–varying delay. In: 3rd European Control Conf., Rome 1995, pp. 1814–1818

[23] Niculescu S. I., Ionescu V., Woerdeman H.: On the Popov theory for some classes of time-delay systems: A matrix pencil approach. In: MTNS’98, Padova 1998

[24] Niculescu S. I., Verriest E. I., Dugard L., Dion J. M.: Stability and robust stability of time–delay systems: A guided tour. In: Stability and Control of Time–Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Inform. Sciences 228). Springer–Verlag, London 1997, pp. 1–71 | MR

[25] Noldus E.: Stabilization of a class of distributional convolution equations. Internat. J. Control 41 (1985), 947–960 | DOI | MR | Zbl

[26] Oară C.: Proper deflating subspaces: properties, algorithmes and applications. Numer. Algorithms 7 (1994), 355–377 | DOI | MR

[28] Răsvan V.: Absolute Stability of Time–Delay Control Systems (in Russian). Nauka, Moscow 1983

[29] Richard J.-P.: Some trends and tools for the study of time delay systems. In: CESA’98 IMACS–IEEE Multiconference, Hammamet 1998, pp. 27–43

[30] Xie L., Souza C. E. de: Robust stabilization and disturbance attenuation for uncertain delay system. In: Proc. 2nd European Control Conf., Groningen 1993, pp. 667–672