Keywords: Popov generalized theory; delay system; memoryless state feedback control
@article{KYB_2000_36_1_a1,
author = {Niculescu, S. I. and Ionescu, V. and Iv\u{a}nescu, D. and Dugard, L. and Dion, J.-M.},
title = {On generalized {Popov} theory for delay systems},
journal = {Kybernetika},
pages = {2--20},
year = {2000},
volume = {36},
number = {1},
mrnumber = {1760884},
zbl = {1249.93141},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a1/}
}
Niculescu, S. I.; Ionescu, V.; Ivănescu, D.; Dugard, L.; Dion, J.-M. On generalized Popov theory for delay systems. Kybernetika, Tome 36 (2000) no. 1, pp. 2-20. http://geodesic.mathdoc.fr/item/KYB_2000_36_1_a1/
[1] Boyd S., Ghaoui L. El, Feron E., Balakrishnan V.: Linear matrix inequalities in system and control theory. (SIAM Stud. Appl. Math. 15.) SIAM Publication, Philadelphia 1994 | MR | Zbl
[2] Dugard L., (eds.) E. I. Verriest: Stability and Control of Time–delay Systems. (Lecture Notes in Control and Inform. Sciences 228.) Springer–Verlag, London 1997 | MR | Zbl
[3] Doyle J. C., Glover K., Khargonekar P. P., Francis B. A.: State–space solutions to standard $H_2$ and $H_\infty $ control problems. IEEE Trans. Automat. Control 34 (1989), 831–847 | DOI | MR
[4] Halanay A., Ionescu V.: Generalized discrete–time Popov–Yakubovich theory. Systems Control Lett. 20 (1993), 1–6 | DOI | MR | Zbl
[5] Halanay A., Ionescu V.: Time–Varying Discrete Linear Systems. Birkhäuser, Basel 1994 | MR | Zbl
[6] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations (Appl. Math. Sciences 99.), Springer–Verlag, Berlin 1991
[7] Ionescu V., Weiss M.: Continuous and discrete-time Riccati theory: a Popov function approach. Linear Algebra Appl. 193 (1993), 173–209 | MR
[8] Ionescu V., Oară C., Weiss M.: Generalized Riccati Theory. Wiley, New York 1998 | Zbl
[9] Ionescu V., Niculescu S. I., Woerdeman H.: On ${\mathcal L}_2$ memoryless control of time–delay systems. In: Proc. 36th IEEE Conf. Decision Control, San Diego 1997
[10] Ionescu V., Niculescu S. I., Dion J. M., Dugard L., Li H.: Generalized Popov theory applied to state–delayed systems. In: Proc. 4th IFAC Conf. System Structure and Control, Nantes 1998 | Zbl
[11] Ionescu V., Niculescu S. I., Dion J. M., Dugard L., Li H.: Generalized Popov theory applied to state–delayed systems. In: Proc. 4th IFAC Conf. System Structure Control, Nantes 1998 | Zbl
[12] Kolmanovskii V. B., Myshkis A.: Applied Theory of Functional Differential Equations. Kluwer, Dordrecht 1992 | MR
[13] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equations. Math. Science Engrg. 180, Academic Press, New York 1986 | MR | Zbl
[14] Kolmanovskii V. B., Richard J. P.: Stability of some systems with distributed delays. European J. Automat. Control 31 (1997), 971–982
[15] Kolmanovskii V. B., Richard J. P., Tchangani A. Ph.: Stability of linear systems with discrete–plus–distributed delays: Application to some model transformations. In: Mathematical Theory of Networks and Systems (MTNS’98), Padova 1998
[16] Lee J. H., Kim S. W., Kwon W. H.: Memoryless $H_\infty $ controllers for state delayed systems. IEEE Trans. Automat. Control 39 (1994), 159–162 | DOI | MR
[17] Li H., Niculescu S. I., Dugard L., Dion J. M.: Robust ${\mathcal H}_\infty $ control for uncertain linear time–delay systems: A linear matrix inequality approach. Part I. In: Proc. 35th IEEE Conf. Decision Control, Kobe 1996
[18] Li H., Niculescu S. I., Dugard L., Dion J. M.: Robust ${\mathcal H}_\infty $ control for uncertain linear time–delay systems: A linear matrix inequality approach with guaranteed $\alpha $-stability. Part II. In: Proc. 35th IEEE Conf. Decision Control, Kobe 1996
[19] Niculescu S. I.: ${\mathcal H}_\infty $ memoryless control with an $\alpha $-stability constraint for time–delay systems: An LMI approach. IEEE Trans. Automat. Control 43 (1998), 739–743 | DOI | MR
[20] Niculescu S. I.: Time–delay systems. Qualitative aspects on stability and stabilization (in French), Diderot Eds., ‘Nouveaux Essais’ Series, Paris 1997 | Zbl
[21] Niculescu S. I., Ionescu V.: On delay–independent stability criteria: A matrix pencil approach. IMA J. Math. Control Inform. 1997 | MR | Zbl
[22] Niculescu S. I., Souza C. E. de, Dion J. M., Dugard L.: Robust ${\mathcal H}_\infty $ memoryless control for uncertain linear systems with time–varying delay. In: 3rd European Control Conf., Rome 1995, pp. 1814–1818
[23] Niculescu S. I., Ionescu V., Woerdeman H.: On the Popov theory for some classes of time-delay systems: A matrix pencil approach. In: MTNS’98, Padova 1998
[24] Niculescu S. I., Verriest E. I., Dugard L., Dion J. M.: Stability and robust stability of time–delay systems: A guided tour. In: Stability and Control of Time–Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Inform. Sciences 228). Springer–Verlag, London 1997, pp. 1–71 | MR
[25] Noldus E.: Stabilization of a class of distributional convolution equations. Internat. J. Control 41 (1985), 947–960 | DOI | MR | Zbl
[26] Oară C.: Proper deflating subspaces: properties, algorithmes and applications. Numer. Algorithms 7 (1994), 355–377 | DOI | MR
[28] Răsvan V.: Absolute Stability of Time–Delay Control Systems (in Russian). Nauka, Moscow 1983
[29] Richard J.-P.: Some trends and tools for the study of time delay systems. In: CESA’98 IMACS–IEEE Multiconference, Hammamet 1998, pp. 27–43
[30] Xie L., Souza C. E. de: Robust stabilization and disturbance attenuation for uncertain delay system. In: Proc. 2nd European Control Conf., Groningen 1993, pp. 667–672