Keywords: minimum variance property; finite-dimensional filter; Gaussian random field; 2D recursive filters; strip processing; image pixels
@article{KYB_1999_35_6_a9,
author = {Jetto, Leopoldo},
title = {On the optimality of a new class of {2D} recursive filters},
journal = {Kybernetika},
pages = {777--792},
year = {1999},
volume = {35},
number = {6},
mrnumber = {1747976},
zbl = {1274.93261},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a9/}
}
Jetto, Leopoldo. On the optimality of a new class of 2D recursive filters. Kybernetika, Tome 35 (1999) no. 6, pp. 777-792. http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a9/
[1] Attasi S.: Modeling and recursive estimation for double indexed sequences. In: System Identification: Advances and Case Studies (R. K. Mehra and D. G. Lainiotis, eds.), Academic Press, New York 1976 | MR
[2] Azimi–Sadjadi M. A., Bannour S.: Two–dimensional recursive parameter identification for adaptive Kalman filtering. IEEE Trans. Circuits and Systems CAS–38 (1991), 1077–1081 | DOI
[3] Azimi–Sadjadi M. R., Khorasani K.: Reduced order strip Kalman filtering using singular perturbation method. IEEE Trans. Circuits and Systems CAS–37 (1990),284–290 | MR
[4] Barry P. E., Gran R., Waters C. R.: Two–dimensional filtering – a state space approach. In: Proc. of Conference Decision and Control 1976, pp. 613–618
[5] Bedini M. A., Jetto L.: Realization and performance evaluation of a class of image models for recursive restoration problems. Internat. J. Systems Sci. 22 (1991), 2499–2519 | DOI | Zbl
[6] Biemond J., Gerbrands J. J.: Comparison of some two–dimensional recursive point–to–point estimators based on a DPCM image model. IEEE Trans. Systems Man Cybernet. SMC–10 (1980), 929–936
[7] Santis A. De, Germani A., Jetto L.: Space-variant recursive restoration of noisy images. IEEE Trans. Circuits and Systems CAS–41 (1994), 249–261
[8] Germani A., Jetto L.: Image modeling and restoration: a new approach. Circuits Syst. Sign. Process. 7 (1988), 427–457 | MR | Zbl
[9] Habibi A.: Two–dimensional bayesian estimate of images. Proc. IEEE 60 (1972), 878–883
[10] Jain A. K.: Partial differential equations and finite–difference methods in image processing. Part I: Image representation. J. Optim. Theory Appl. 23 (1977), 65–91 | DOI | MR | Zbl
[11] Jain A. K., Angel E.: Image restoration, modeling and reduction of dimensionality. IEEE Trans. Comput. C-23 (1974), 470–476 | DOI
[12] Jain A. K., Jain J. R.: Partial differential equations and finite difference methods in image processing. Part II: Image restoration. IEEE Trans. Automat. Control AC–23 (1978), 817–833 | DOI
[13] Katayama T.: Restoration of noisy images using a two–dimensional linear model. IEEE Trans. Systems Man Cybernet. SMC–9 (1979), 711–717 | DOI | Zbl
[14] Katayama T.: Estimation of images modeled by a two–dimensional separable autoregressive process. IEEE Trans. Automat. Control AC–26 (1980), 1199–1201 | DOI
[15] Katayama T., Kosaka M.: Recursive filtering algorithm for a two–dimensional system. IEEE Trans. Automat. Control AC–24 (1979), 130–132 | DOI | Zbl
[16] Kaufman H., Woods J. W., Dravida S., Tekalp A. M.: Estimation and identification of two–dimensional images. IEEE Trans. Automat. Control AC–28 (1983), 745–756 | DOI | Zbl
[17] Keshavan H. R., Srinath M. D.: Sequential estimation technique for enhancement of noisy images. IEEE Trans. Comput. C–26 (1977), 971–987 | DOI | Zbl
[18] Keshavan H. R., Srinath M. D.: Enhancement of noisy images using an interpolative model in two dimensions. IEEE Trans. Systems Man Cybernet. SMC–8 (1978), 247–259 | DOI | MR
[19] Liebelt P. B.: An Introduction to Optimal Estimation. Addison–Wesley, Reading, MA 1967 | Zbl
[20] Murphy M. S.: Comments on ‘Recursive filtering algorithm for a two–dimensional system’. IEEE Trans. Automat. Control AC–25 (1980), 336–338 | DOI | Zbl
[21] Murphy M. S., Silverman L. M.: Image model representation and line–by–line recursive restoration. IEEE Trans. Automat. Control AC–23 (1978), 809–816 | DOI
[22] Nahi N. E.: Role of recursive estimation in statistical image enhancement. Proc. IEEE 60 (1972), 872–877
[23] Nahi N. E., Assefi T.: Bayesian recursive image estimation. IEEE Trans. Comput. C–21 (1972), 734–738 | Zbl
[24] Nahi N. E., Franco C. A.: Recursive image enhancement-vector processing. IEEE Trans. Comm. Com–21 (1973), 305–311 | DOI
[25] Panda D. P., Kak A. C.: Recursive Filtering of Pictures. Tech. Rep. TR-EE-76, School of Electrical Engineering, Purdue University, Lafayette, Ind., 1976; also in: A. Rosenfield and A. C. Kak: Digital Picture Processing. Chapter 7. Academic Press, New York 1976
[26] Powell S. R., Silverman L. M.: Modelling of two–dimensional covariance function with application to image enhancement. IEEE Trans. Automat. Control AC–19 (1974), 8–13 | DOI | MR
[27] Strintzis M. G.: Comments on ‘Two-dimensional Bayesian estimate of images’. Proc. IEEE 64 (1976), 1255–1257
[28] Suresh B. R., Shenoi B. A.: The state–space realization of a certain class of two–dimensional systems with applications to image restoration. Computer Graphics and Image Processing 11 (1979), 101–110 | DOI
[29] Suresh B. R., Shenoi B. A.: New results in two–dimensional Kalman filtering with applications to image restoration. IEEE Trans. Circuits and Systems CAS–28 (1981), 307–319 | DOI
[30] Wellstead P. E., Pinto J. R. Caldas: Self tuning filters and predictors for two–dimensional systems. Part I: Algorithms. Internat. J. Control 42 (1985), 479–496 | DOI
[31] Wellstead P. E., Pinto J. R. Caldas: Self tuning filters and predictors for two–dimensional systems. Part II: Smoothing applications. Internat. J. Control 42 (1985), 479–496 | DOI
[32] Woods J. W., Radewan C. H.: Kalman filtering in two dimensions. IEEE Trans. Inform. Theory IT–23 (1977), 809–816 | DOI | MR | Zbl
[33] Yum Y. H., Park S. B.: Optimum recursive filtering of noisy two–dimensional data with sequential parameter identification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–5 (1983), 337–344 | DOI
[34] Zou C. T., Plotkin E. I., Swamy M. N. S.: 2-D fast Kalman algorithms for adaptive estimation of nonhomogeneous gaussian Markov random field model. IEEE Trans. Circuits and Systems 41 (1994), 678–692 | DOI