Keywords: block decoupling problem over a Noetherian ring; feedback law; principal ideal domain
@article{KYB_1999_35_6_a8,
author = {Assan, Jean and Perdon, Anna M.},
title = {An efficient computation of the solution of the block decoupling problem with coefficient assignment over a ring},
journal = {Kybernetika},
pages = {765--776},
year = {1999},
volume = {35},
number = {6},
mrnumber = {1747975},
zbl = {1274.93087},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a8/}
}
TY - JOUR AU - Assan, Jean AU - Perdon, Anna M. TI - An efficient computation of the solution of the block decoupling problem with coefficient assignment over a ring JO - Kybernetika PY - 1999 SP - 765 EP - 776 VL - 35 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a8/ LA - en ID - KYB_1999_35_6_a8 ER -
Assan, Jean; Perdon, Anna M. An efficient computation of the solution of the block decoupling problem with coefficient assignment over a ring. Kybernetika, Tome 35 (1999) no. 6, pp. 765-776. http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a8/
[1] Adams W. W., Loustaunau P.: An introduction to Gröbner bases. (Graduate Studies in Mathematics 3.) Amer. Math. Soc. 1996 | MR | Zbl
[2] Assan J., Lafay J. F., Perdon A. M.: An algorithm to compute maximal pre–controllability submodules over a Principal Ideal Domain. In: Proc. IFAC Workshop on Linear Time Delay Systems, Grenoble 1998, pp. 123–128
[3] Assan J., Lafay J. F., Perdon A. M.: Computation of maximal pre-controllability submodules over a Noetherian ring (to appear.
[4] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Englewood Cliffs, N. J. 1992 | MR | Zbl
[5] Brewer J. W., Klinger L. C., Schmale W.: The dynamic feedback cyclization problem for Principal Ideal Domains. J. Pure Appl. Algebra (1994), 31–42
[6] Buchberger B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. Thesis, University of Innsbruck, Innsbruck 1965
[8] Conte G., Perdon A. M.: The disturbance decoupling problem for systems over a ring. SIAM J. Control Optim. 33 (1995), 3, 750–764 | DOI | MR | Zbl
[9] Conte G., Perdon A. M.: The block decoupling problem for systems over a ring. IEEE Trans. Automat. Control 43 (1998), 11, 1600–1604 | DOI | MR | Zbl
[10] Conte G., Perdon A. M., Lombardo A.: Block decoupling problem with coefficient assignment and stability for linear systems over Noetherian rings. In: Proc. IFAC Conference on System Structure and Control, Nantes 1998
[11] Emre E., Khargonekar P.: Regulation of split linear systems over rings; coefficient assignment and observers. IEEE Trans. Automat. Control AC–27 (1982), 1, 104–113 | DOI | MR | Zbl
[12] Dübbelde J., Schmale W.: Normalformproblem und Koefficientenzuweisung bei Systemen über euklidischen Ringen. University of Oldenburg, 1994
[13] Hautus M. L. J.: Disturbance rejection for systems over rings. (Lecture Notes in Control and Infomation Sciences 58.) Springer–Verlag, Berlin 1984 | DOI | MR | Zbl
[14] Inaba H., Ito N., Munaka T.: Decoupling and pole assignment for linear systems defined over a Principal Ideal Domain. In: Linear Circuits, Systems and Signal Processing: Theory and Applications (C. I. Byrnes, C. F. Martin, R. E. Saeks, eds.), North Holland, Amsterdam 1988 | MR
[15] Lang S.: Algebra. Second edition. Addison Wesley, Reading 1984 | MR | Zbl
[16] Sename O., Lafay J. F.: Decoupling of square linear systems with delays. IEEE Trans. Automat. Control 42 (1997), 5, 736–742 | DOI | MR | Zbl
[17] Wonham M.: Linear Multivariable Control: A Geometric Approach. Third edition. Springer–Verlag, New York 1985 | MR | Zbl