Robust observer design for time-delay systems: a Riccati equation approach
Kybernetika, Tome 35 (1999) no. 6, pp. 753-764 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, a method for $H_\infty $ observer design for linear systems with multiple delays in state and output variables is proposed. The designing method involves attenuating of the disturbance to a pre-specified level. The observer design requires solving certain algebraic Riccati equation. An example is given in order to illustrate the proposed method.
In this paper, a method for $H_\infty $ observer design for linear systems with multiple delays in state and output variables is proposed. The designing method involves attenuating of the disturbance to a pre-specified level. The observer design requires solving certain algebraic Riccati equation. An example is given in order to illustrate the proposed method.
Classification : 93B07, 93B36, 93B51
Keywords: linear system; time delay; Riccati equation; robust observer design
@article{KYB_1999_35_6_a7,
     author = {Fattouh, Anas and Sename, Olivier and Dion, Jean-Michel},
     title = {Robust observer design for time-delay systems: a {Riccati} equation approach},
     journal = {Kybernetika},
     pages = {753--764},
     year = {1999},
     volume = {35},
     number = {6},
     mrnumber = {1747974},
     zbl = {1274.93079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a7/}
}
TY  - JOUR
AU  - Fattouh, Anas
AU  - Sename, Olivier
AU  - Dion, Jean-Michel
TI  - Robust observer design for time-delay systems: a Riccati equation approach
JO  - Kybernetika
PY  - 1999
SP  - 753
EP  - 764
VL  - 35
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a7/
LA  - en
ID  - KYB_1999_35_6_a7
ER  - 
%0 Journal Article
%A Fattouh, Anas
%A Sename, Olivier
%A Dion, Jean-Michel
%T Robust observer design for time-delay systems: a Riccati equation approach
%J Kybernetika
%D 1999
%P 753-764
%V 35
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a7/
%G en
%F KYB_1999_35_6_a7
Fattouh, Anas; Sename, Olivier; Dion, Jean-Michel. Robust observer design for time-delay systems: a Riccati equation approach. Kybernetika, Tome 35 (1999) no. 6, pp. 753-764. http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a7/

[1] Boyd S., Ghaoui L. EL, Feron E., Balakrishnan V.: Linear matrix inequalities in system and control theory. SIAM Stud. Appl. Math. 1994 | MR | Zbl

[2] Choi H. H., Chung M. J.: Observer–based $H_{\infty }$ controller design for state delayed linear systems. Automatica 32 (1996), 1073–1075 | DOI | MR

[3] Choi H. H., Chung M. J.: An LMI approach to $H_{\infty }$ controller design for linear time–delay systems. Automatica 33 (1997), 737–739 | DOI | MR

[4] Fattouh A., Sename O., Dion J.-M.: $H_{\infty }$ Observer design for time–delay systems. In: Proc. of the 37th IEEE Conference on Decision and Control, Tampa 1998, pp. 4545–4546

[5] Fattouh A., Sename O., Dion J.-M.: $\alpha $–decay rate observer design for linear systems with delayed state. In: Proc. of the 8th European Control Conference, Karlsruhe 1999

[6] Furukawa T., Shimemura E.: Stabilizability conditions by memoryless feedback for linear systems with time-delay. Internat. J. Control. 37 (1983), 553–565 | DOI | MR | Zbl

[7] Khargonekar P. P., Petersen I. R., Zhou K.: Robust stabilization of uncertain linear systems: Quadratic stabilizability and $H_\infty $ control theory. IEEE Trans. Automat. Control 35 (1990), 356–361 | DOI | MR

[8] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equation. Academic Press, New York 1986 | MR

[9] Lee E. B., Olbrot A.: Observability and related structural results for linear hereditary systems. Internat. J. Control. 34 (1981), 1061–1078 | DOI | MR | Zbl

[10] Lee J. H., Kim S. W., Kwon W. H.: Memoryless $H^{\infty }$ controllers for state delayed systems. IEEE Trans. Automat. Control 39 (1994), 159–162 | DOI | MR

[11] Niculescu S. I., Trofino–Neto A., Dion J.-M., Dugard L.: Delay–dependent stability of linear systems with delayed state: An L. M.I. approach. In: Proc. of the 34th Conference on Decision and Control, New Orleans 1995, pp. 1495–1496

[12] Pearson A. E., Fiagbedzi Y. A.: An observer for time lag systems. IEEE Trans. Automat. Control 34 (1989), 775–777 | DOI | MR | Zbl

[13] Petersen I. R., Anderson B. D. O., Jonckheere E. A.: A first principles solution to the non–singular $H^\infty $ control problem. Internat. J. Robust and Nonlinear Control 1 (1991), 171–185 | DOI

[14] Ramos J. L., Pearson A. E.: An asymptotic modal observer for linear autonomous time lag systems. IEEE Trans. Automat. Control 40 (1995), 1291–1294 | DOI | MR | Zbl

[15] Watanabe K.: Finite spectrum assignment and observer for multivariable systems with commensurate delays. IEEE Trans. Automat. Control 31 (1986), 543–550 | DOI | MR | Zbl

[16] Watanabe K., Ouchi T.: An observer of systems with delays in state variables. Internat. J. Control 41 (1985), 217–229 | DOI | MR

[17] Yao Y. X., Zhang Y. M., Kovacevic R.: Parameterization of observers for time delay systems and its application in observer design. IEE Proc. Control Theory Appl. 143 (1996), 225–232

[18] Zhou K., Doyle J. C., Glover K.: Robust and Optimal Control. Prentice–Hall, Englewood Cliffs, N. J. 1996 | Zbl