Keywords: balanced truncation; linear periodic system; model error; infinity norm
@article{KYB_1999_35_6_a6,
author = {Longhi, Sauro and Orlando, Giuseppe},
title = {Balanced reduction of linear periodic systems},
journal = {Kybernetika},
pages = {737--751},
year = {1999},
volume = {35},
number = {6},
mrnumber = {1747973},
zbl = {1274.93112},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a6/}
}
Longhi, Sauro; Orlando, Giuseppe. Balanced reduction of linear periodic systems. Kybernetika, Tome 35 (1999) no. 6, pp. 737-751. http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a6/
[1] Al–Saggaf U. M., Franklin G. F.: An error bound for a discrete reduced order model of a linear multivariable system. IEEE Trans. Automat. Control AC–32 (1987), 9, 815–819 | Zbl
[2] Bittanti S.: Deterministic and stochastic linear periodic systems. In: Time Series and Linear Systems (S. Bittanti, ed.), Springer–Verlag, Berlin 1986 | MR
[3] Bolzern P., Colaneri P.: Existence and uniqueness conditions for the periodic solutions of the discrete–time periodic Lyapunov equations. In: Proc. of 25th Conference on Decision and Control, Athens 1986, pp. 1439–1443
[4] Bolzern P., Colaneri P., Scattolini R.: Zeros of discrete–time linear periodic systems. IEEE Trans. Automat. Control AC–31 (1986), 1057–1059 | DOI | Zbl
[5] Colaneri P., Longhi S.: The lifted and cyclic reformulations in the minimal realization of linear discrete–time periodic systems. In: Proc. of the 1st IFAC Workshop on New Trends in Design of Control Systems, Smolenice 1994, pp. 329–334
[6] Colaneri P., Longhi S.: The realization problem for linear periodic systems. Automatica 31 (1995), 775–779 | DOI | MR | Zbl
[7] Evans D. S.: Finite–dimensional realizations of discrete–time weighting patterns. SIAM J. Appl. Math. 22 (1972), 45–67 | DOI | MR
[8] Flamm D. S.: A new shift–invariant representation for periodic linear systems. Systems Control Lett. 17 (1991), 9–14 | DOI | MR | Zbl
[9] Fortuna L., Nunnari G., Gallo A.: Model Order Reduction Techniques with Applications in Electrical Engineering. Springer–Verlag, Berlin 1992
[10] Glover K.: All optimal Hankel–norm approximation of linear multivariable systems and their $L^\infty $–errors bounds. Internat. J. Control 39 (1984), 6, 1115–1193 | DOI | MR
[11] Gohberg I., Kaashoek M. A., Lerer L.: Minimality and realization of discrete time–varying systems. Oper. Theory: Adv. Appl. 56 (1992), 261–296 | MR | Zbl
[12] Grasselli O. M., Longhi S.: Disturbance localization by measurements feedback for linear periodic discrete–time systems. Automatica 24 (1988), 375–385 | DOI | MR
[13] Grasselli O. M., Longhi S.: Zeros and poles of linear periodic discrete–time systems. Circuits Systems Signal Process. 7 (1988), 361–380 | MR
[14] Grasselli O. M., Longhi S.: Robust tracking and regulation of linear periodic discrete–time systems. Internat. J. Control 54 (1991), 613–633 | DOI | MR | Zbl
[15] Grasselli O. M., Longhi S.: The geometric approach for linear periodic discrete–time systems. Linear Algebra Appl. 158 (1991), 27–60 | MR | Zbl
[16] Gree M., Limebeer D. J. N.: Linear Robust Control. Prentice Hall, Englewood Cliffs, N. J. 1995
[17] Mayer R. A., Burrus C. S.: A unified analysis of multirate and periodically time–varying digital filters. Trans. Ccts Syst. CSA–22 (1975), 162–168 | MR
[18] Moore B. C.: Principal component analysis in linear systems: controllability, observability and modal reduction. Trans. Automat. Control AC–26 (1981), 17–32 | DOI | MR
[19] Park B., Verriest E. I.: Canonical forms on discrete linear periodically time–varying systems and a control application. In: Proc. of the 28th IEEE Conference on Decision and Control, Tampa 1989, pp. 1220–1225 | MR
[20] Pernebo L., Silverman L. M.: Model reduction via balanced state space representations. IEEE Trans. Automat. Control AC–27 (1982), 2, 382–387 | DOI | MR | Zbl
[21] Salomon G., Zhou K., Wu E.: A new balanced realization and model reduction method for unstable systems. In: Proc. of 14th IFAC World Congress, Beijing 1999, vol. D, pp. 123–128
[22] Shokoohi S., Silverman L. M., Dooren P. Van: Linear time–variable systems: balancing and model reduction. Trans. Automat. Control AC-28 (1983), 8, 810–822 | MR
[23] Shokoohi S., Silverman L. M., Dooren P. Van: Linear time–variable systems: stability of reduced models. Automatica 20 (1984), 1, 59–67 | DOI | MR
[24] Varga A.: Periodic Lyapunov equations: some applications and new algorithms. Internat. J. Control 67 (1997), 69–87 | DOI | MR | Zbl
[25] Xie B., Aripirala R. K. A. V., Syrmos V. L.: Model reduction of linear discrete–time periodic systems using Hankel–norm approximation. In: Proc. of IFAC 13th World Congress, San Francisco, 1996, pp. 245–250