Continuous-time input-output decoupling for sampled-data systems
Kybernetika, Tome 35 (1999) no. 6, pp. 721-735 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The problem of obtaining a continuous-time (i. e., ripple-free) input-output decoupled control system for a continuous-time linear time-invariant plant, by means of a purely discrete-time compensator, is stated and solved in the case of a unity feedback control system. Such a control system is hybrid, since the plant is continuous-time and the compensator is discrete-time. A necessary and sufficient condition for the existence of a solution of such a problem is given, which reduces the mentioned hybrid control problem to an equivalent purely continuous-time decoupling problem. A simple necessary and sufficient condition for the existence of a solution of such a continuous-time decoupling problem is given for square plants (with and without the additional requirement of the asymptotic stability of the over-all control system), together with a parameterisation of all the decoupling controllers. Moreover, for square plants, it is shown that, whenever the hybrid control problem admits a solution, any solution of the corresponding decoupling problem for the discrete-time model of the given continuous-time system is also a solution of the hybrid control problem.
The problem of obtaining a continuous-time (i. e., ripple-free) input-output decoupled control system for a continuous-time linear time-invariant plant, by means of a purely discrete-time compensator, is stated and solved in the case of a unity feedback control system. Such a control system is hybrid, since the plant is continuous-time and the compensator is discrete-time. A necessary and sufficient condition for the existence of a solution of such a problem is given, which reduces the mentioned hybrid control problem to an equivalent purely continuous-time decoupling problem. A simple necessary and sufficient condition for the existence of a solution of such a continuous-time decoupling problem is given for square plants (with and without the additional requirement of the asymptotic stability of the over-all control system), together with a parameterisation of all the decoupling controllers. Moreover, for square plants, it is shown that, whenever the hybrid control problem admits a solution, any solution of the corresponding decoupling problem for the discrete-time model of the given continuous-time system is also a solution of the hybrid control problem.
Classification : 93B17, 93B52, 93C30, 93C57
Keywords: continuous-time control; input-output decoupling; sampled-data systems; unity feedback control
@article{KYB_1999_35_6_a5,
     author = {Grasselli, Osvaldo M. and Menini, Laura},
     title = {Continuous-time input-output decoupling for sampled-data systems},
     journal = {Kybernetika},
     pages = {721--735},
     year = {1999},
     volume = {35},
     number = {6},
     mrnumber = {1747972},
     zbl = {1274.93185},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a5/}
}
TY  - JOUR
AU  - Grasselli, Osvaldo M.
AU  - Menini, Laura
TI  - Continuous-time input-output decoupling for sampled-data systems
JO  - Kybernetika
PY  - 1999
SP  - 721
EP  - 735
VL  - 35
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a5/
LA  - en
ID  - KYB_1999_35_6_a5
ER  - 
%0 Journal Article
%A Grasselli, Osvaldo M.
%A Menini, Laura
%T Continuous-time input-output decoupling for sampled-data systems
%J Kybernetika
%D 1999
%P 721-735
%V 35
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a5/
%G en
%F KYB_1999_35_6_a5
Grasselli, Osvaldo M.; Menini, Laura. Continuous-time input-output decoupling for sampled-data systems. Kybernetika, Tome 35 (1999) no. 6, pp. 721-735. http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a5/

[1] Argoun M. B., Vegte J. van de: Output feedback decoupling in the frequency domain. Internat. J. Control 31 (1980), 4, 665–675 | DOI | MR

[2] Chen. C. T.: Linear System Theory and Design. Holt, Rinehart and Winston, New York 1984

[3] Descusse J., Lafay J. F., Malabre M.: Solution to Morgan’s problem. IEEE Trans. Automomat. Control AC-33 (1988), 8, 732–739 | MR | Zbl

[4] Desoer C. A., Gündes A. N.: Decoupling linear multiinput multioutput plants by dynamic output feedback: an algebraic theory. IEEE Trans. Automat. Control AC-31 (1986), 8, 744–750 | MR | Zbl

[5] Dickman A., Sivan R.: On the robustness of multivariable linear feedback systems. IEEE Trans. Automat. Control AC-30 (1985), 4, 401–404 | DOI | MR | Zbl

[6] Falb P. L., Wolovich W. A.: Decoupling in the design and synthesis of multivariable control systems. IEEE Trans. Automat. Control AC-12 (1967), 6, 651–659 | DOI

[7] Francis B. A., Georgiou T. T.: Stability theory for linear time-invariant plants with periodic digital controllers. IEEE Trans. Automat. Control AC-33 (1988), 9, 820–832 | DOI | MR | Zbl

[8] Franklin G. F., Emami–Naeini A.: Design of ripple–free multivariable robust servomechanism. IEEE Trans. Automat. Control AC-31 (1986), 7, 661–664 | DOI

[9] Grasselli O. M., Longhi S., Tornambè A., Valigi P.: Robust ripple–free regulation and tracking for parameter dependent sampled–data systems. IEEE Trans. Automat. Control AC-41 (1996), 7, 1031–1037 | DOI | MR | Zbl

[10] Gündes A. N.: Parameterization of decoupling controllers in the unity–feedback system. IEEE Trans. Automat. Control AC-37 (1992), 10, 1572–1575 | DOI | MR | Zbl

[11] Hautus M. L. J., Heymann M.: Linear feedback decoupling – transfer function analysis. IEEE Trans. Automat. Control AC-28 (1983), 8, 823–832 | MR | Zbl

[12] Lin C. A.: Necessary and sufficient conditions for existence of decoupling controllers. IEEE Trans. Automat. Control AC-42 (1997), 8, 1157–1161 | MR | Zbl

[14] Urikura S., Nagata A.: Ripple–free deadbeat control for sampled–data systems. IEEE Trans. Automat. Control AC-32 (1987), 474–482 | DOI | MR | Zbl

[15] Wang Q. G.: Decoupling with internal stability for unity output feedback systems. Automatica 28 (1992), 411–415 | DOI | MR | Zbl

[16] Wonham W. M., Morse A. S.: Decoupling and pole assignment in linear multivariable systems: a geometric approach. SIAM J. Control 8 (1970), 1–18 | DOI | MR | Zbl

[17] Yamamoto Y.: A function space approach to sampled data control systems and tracking problems. IEEE Trans. Automat. Control AC-39 (1994), 4, 703–713 | DOI | MR | Zbl