The algebraic output feedback in the light of dual-lattice structures
Kybernetika, Tome 35 (1999) no. 6, pp. 693-706 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The purpose of this paper is to derive constructive necessary and sufficient conditions for the problem of disturbance decoupling with algebraic output feedback. Necessary and sufficient conditions have also been derived for the same problem with internal stability. The same conditions have also been expressed by the use of invariant zeros. The main tool used is the dual- lattice structures introduced by Basile and Marro [R4].
The purpose of this paper is to derive constructive necessary and sufficient conditions for the problem of disturbance decoupling with algebraic output feedback. Necessary and sufficient conditions have also been derived for the same problem with internal stability. The same conditions have also been expressed by the use of invariant zeros. The main tool used is the dual- lattice structures introduced by Basile and Marro [R4].
Classification : 93B52, 93D15, 93D25
Keywords: algebraic output feedback control; disturbance decoupling; dual-lattice structures; algebraic output feedback
@article{KYB_1999_35_6_a3,
     author = {Marro, Giovanni and Barbagli, Federico},
     title = {The algebraic output feedback in the light of dual-lattice structures},
     journal = {Kybernetika},
     pages = {693--706},
     year = {1999},
     volume = {35},
     number = {6},
     mrnumber = {1747970},
     zbl = {1274.93099},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a3/}
}
TY  - JOUR
AU  - Marro, Giovanni
AU  - Barbagli, Federico
TI  - The algebraic output feedback in the light of dual-lattice structures
JO  - Kybernetika
PY  - 1999
SP  - 693
EP  - 706
VL  - 35
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a3/
LA  - en
ID  - KYB_1999_35_6_a3
ER  - 
%0 Journal Article
%A Marro, Giovanni
%A Barbagli, Federico
%T The algebraic output feedback in the light of dual-lattice structures
%J Kybernetika
%D 1999
%P 693-706
%V 35
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a3/
%G en
%F KYB_1999_35_6_a3
Marro, Giovanni; Barbagli, Federico. The algebraic output feedback in the light of dual-lattice structures. Kybernetika, Tome 35 (1999) no. 6, pp. 693-706. http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a3/

[1] Anderson B. D. O.: A note on transmission zeros of a transfer function matrix. IEEE Trans. Automat. Control 21 (1976), 589–591 | DOI | MR | Zbl

[2] Basile G., Marro G.: On the observability of linear time–invariant systems with unknown inputs. J. Optim. Theory Appl. 3 (1969), 6, 410–415 | DOI | MR | Zbl

[3] Basile G., Marro G.: L’invarianza rispetto ai disturbi studiata nello spazio degli stati. Rendiconti della LXX Riunione Annuale AEI, paper 1-4-01, Rimini, Italy 1969

[4] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, New Jersey 1992 | MR | Zbl

[5] Basile G., Marro G., Piazzi A.: A new solution to the disturbance localization problem with stability and its dual. In: Proceedings of the ’84 International AMSE Conference on Modelling and Simulation, Athens 1984, vol. 1, 2, pp. 19–27

[6] Chen B. M.: Solvability conditions for disturbance decoupling problems with static measurement feedback. Internat. J. Control 68 (1976), 1, 51–60 | DOI | MR

[7] Imai H., Akashi H.: Disturbance localization and pole shifting by dynamic compensation. IEEE Trans. Automat. Control AC-26 (1981), 1, 226–235 | DOI | MR | Zbl

[8] Piazzi A., Marro G.: The role of invariant zeros in multivariable system stability. In: Proceedings of the 1991 European Control Conference, Grenoble 1991

[9] Rosenbrock H. H.: State–Space and Multivariable Theory. Wiley, New York 1970 | MR | Zbl

[10] Willems J. C., Commault C.: Disturbance decoupling by measurement feedback with stability or pole placement. SIAM J. Control Optim. 19 (1981), 4, 490–504 | DOI | MR | Zbl

[11] Wonham W. M., Morse A. S.: Decoupling and pole assignment in linear multivariable systems: a geometric approach. SIAM J. Control 8 (1970), 1, 1–18 | DOI | MR | Zbl