Keywords: linearization of nonlinear systems; input-output injection; exterior differentiation; I or O differential equation structure; observer synthesis
@article{KYB_1999_35_6_a10,
author = {L\'opez Morales, Virgilio and Plestan, F. and Glumineau, A.},
title = {Linearization by completely generalized input-output injection},
journal = {Kybernetika},
pages = {793--802},
year = {1999},
volume = {35},
number = {6},
mrnumber = {1747977},
zbl = {1274.93061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a10/}
}
López Morales, Virgilio; Plestan, F.; Glumineau, A. Linearization by completely generalized input-output injection. Kybernetika, Tome 35 (1999) no. 6, pp. 793-802. http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a10/
[1] Bestle D., Zeitz M.: Canonical form observer design for nonlinear time varying systems. Internat. J. Control 38 (1983), 419–431 | DOI | MR
[2] Birk J., Zeitz M.: Extended Luenberger observers for nonlinear multivariable systems. Internat. J. Control 47 (1988), 1823–1836 | DOI | MR
[3] Chiasson J. N.: Nonlinear differential–geometric techniques for control of a series DC motor. IEEE Trans. Systems Technology 2 (1994), 35–42 | DOI
[4] Diop S., Grizzle J. W., Moraal P. E., Stefanopoulou A.: Interpolation and numerical differentiation for observer design. In: Proc. of American Control Conference 94, Evanston 1994, pp. 1329–1333
[5] Fliess M.: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Automat. Control 35 (1990), 994–1001 | DOI | MR | Zbl
[6] Glumineau A., Moog C. H., Plestan F.: New algebro–geometric conditions for the linearization by input–output injection. IEEE Trans. Automat. Control 41 (1996), 598–603 | DOI | MR | Zbl
[7] Hammouri H., Gauthier J. P.: Bilinearization up to output injection. Systems Control Lett. 11 (1988), 139–149 | DOI | MR | Zbl
[8] Keller H.: Nonlinear observer design by transformation into a generalized observer canonical form. Internat. J. Control 46 (1987), 1915–1930 | DOI | MR | Zbl
[9] Krener A. J., Respondek W.: Nonlinear observers with linearizable error dynamics SIAM J. Control Optim. 23 (1985), 197–216 | DOI | MR
[10] López-M. V., Glumineau A.: Further results on linearization of nonlinear systems by input output injection. In: Proc. of 36th IEEE Conference on Decision and Control, San Diego 1997
[11] Marino R.: Adaptive observers for single output nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 1054–1058 | DOI | MR | Zbl
[12] Marino R., Tomei P.: Dynamic output feedback linearization and global stabilization. Systems Control Lett. 17 (1991), 115–121 | DOI | MR | Zbl
[13] Phelps A. R.: On constructing nonlinear observers. SIAM J. Control Optim. 29 (1991), 516–534 | DOI | MR | Zbl
[14] Plestan F., Cherki B.: An observer for one flexible robot by an algebraic method. In: IFAC Workshop on New Trends in Design of Control Systems NTDCS’94, Smolenice 1994, pp. 41–46
[15] Plestan F., Glumineau A.: Linearization by generalized input–output injection. Systems Control Lett. 31 (1997), 115–128 | DOI | MR | Zbl
[16] Proychev T. Ph., Mishkov R. L.: Transformation of nonlinear systems in observer canonical form with reduced dependency on derivatives of the input. Automatica 29 (1993), 495–498 | DOI | MR | Zbl
[17] Williamson D.: Observation of bilinear systems with application to biological systems. Automatica 13 (1977), 243–254 | DOI
[18] Xia X. H., Gao W. B.: Nonlinear observers design by dynamic error linearization. SIAM J. Control Optim. 27 (1989), 1, 199–216 | DOI | MR