Keywords: linear delay system; static state feedback; decoupling problem; disturbance
@article{KYB_1999_35_6_a1,
author = {Rabah, Rabah and Malabre, Michel},
title = {On the structure at infinity of linear delay systems with application to the disturbance decoupling problem},
journal = {Kybernetika},
pages = {668--680},
year = {1999},
volume = {35},
number = {6},
mrnumber = {1747968},
zbl = {1274.93108},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a1/}
}
TY - JOUR AU - Rabah, Rabah AU - Malabre, Michel TI - On the structure at infinity of linear delay systems with application to the disturbance decoupling problem JO - Kybernetika PY - 1999 SP - 668 EP - 680 VL - 35 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a1/ LA - en ID - KYB_1999_35_6_a1 ER -
Rabah, Rabah; Malabre, Michel. On the structure at infinity of linear delay systems with application to the disturbance decoupling problem. Kybernetika, Tome 35 (1999) no. 6, pp. 668-680. http://geodesic.mathdoc.fr/item/KYB_1999_35_6_a1/
[1] Hautus M. L. J.: The formal Laplace transform for smooth linear systems. In: Proc. of Internat. Symposium on Mathematical Systems Theory, Udine 1975 (Lecture Notes in Economics and Mathematical Systems 131), Springer–Verlag, Berlin pp. 29–47 | MR
[2] Malabre M., Rabah R.: On infinite zeros for infinite dimensional systems. In: Progress in Systems and Control Theory 3, Realiz. Model. in Systems Theory, Vol. 1, Birkhaüser, Boston 1990, pp. 19–206 | MR
[3] Malabre M., Rabah R.: Structure at infinity, model matching and disturbance rejection for linear systems with delays. Kybernetika 29 (1993), 5, 485–498 | MR | Zbl
[4] Moog C.: Inversion, découplage, poursuite de modèle des systèmes non linéaires. PhD Thesis, ENSM, Nantes 1987
[5] Picard P., Lafay J.-F., Kučera V.: Model matching for linear systems with delays. In: Proc. of 13th IFAC Congress, San Francisco 1996, Vol. D, pp. 183–188
[6] Pandolfi L.: Disturbance decoupling and invariant subspaces for delay systems. Appl. Math. Optim. 14 (1986), 55–72 | DOI | MR | Zbl
[7] Rabah R.: Structural properties and controllability for delay systems of neutral type. In: Proc. of the IFAC Conference on System Structure and Control, Nantes 1995, pp. 354–359
[8] Rabah R., Malabre M.: Structure at infinity for delay systems revisited. In: Proc. of IMACS and IEEE–SMC Multiconference CESA’96, Symposium on Modelling, Analysis and Simulation, Lille 1996, pp. 87–90
[9] Rabah R., Malabre M.: A note on decoupling for linear infinite dimensional systems. In: Proc. 4th IFAC Conf. on System Structure and Control, Bucharest 1997, pp. 78–83
[10] Rabah R., Malabre M.: The structure at infinity of linear delay systems and the row–by–row decoupling problem. In: Proc. of 7th IEEE Mediterranean Conference on Control and Automation, Haifa 1999, pp. 1845–1854
[11] Sename O., Rabah R., Lafay J.-F.: Decoupling without prediction of linear systems with delays: a structural approach. Systems Control Lett. 25 (1995), 387–395 | DOI | MR | Zbl
[12] Silverman L. M., Kitapçi A.: System structure at infinity. In: Colloque National CNRS, Développement et Utilisation d’Outils et Modèles Mathématiques en Automatique des Systèmes et Traitement du Signal, Belle–Ile 1983, Ed. CNRS, Vol. 3, pp. 413–424 | MR | Zbl
[13] Tsoi A. C.: Recent advances in the algebraic system theory of delay differential equations. In: Recent Theoretical Developments in Control (M. J. Gregson, ed.), Academic Press, New York 1978, pp. 67–127 | MR | Zbl
[14] Wonham W. M.: Linear Multivariable Control: A Geometric Approach. Third edition. Springer–Verlag, New York 1985 | MR | Zbl