Keywords: dynamic contraction method; tracking problem; aircraft motion controller; low-order linear dynamical system; decoupled output transients; sensor noise
@article{KYB_1999_35_5_a5,
author = {B{\l}achuta, Marian J. and Yurkevich, Valery D. and Wojciechowski, Konrad},
title = {Robust quasi {NID} aircraft {3D} flight control under sensor noise},
journal = {Kybernetika},
pages = {637--650},
year = {1999},
volume = {35},
number = {5},
mrnumber = {1728472},
zbl = {1274.93094},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a5/}
}
TY - JOUR AU - Błachuta, Marian J. AU - Yurkevich, Valery D. AU - Wojciechowski, Konrad TI - Robust quasi NID aircraft 3D flight control under sensor noise JO - Kybernetika PY - 1999 SP - 637 EP - 650 VL - 35 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a5/ LA - en ID - KYB_1999_35_5_a5 ER -
Błachuta, Marian J.; Yurkevich, Valery D.; Wojciechowski, Konrad. Robust quasi NID aircraft 3D flight control under sensor noise. Kybernetika, Tome 35 (1999) no. 5, pp. 637-650. http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a5/
[1] Balas G., Garrard W., Reiner J.: Robust dynamic inversion control laws for aircraft control. In: Proc. of the AIAA Guidance, Navigation and Control Conference, 1992, pp. 192–205
[2] Batenko A. P.: Final State Control of Driven Plants. Moscow, 1977. In Russian
[3] Błachuta M. J., Yurkevich V. D., Wojciechowski K.: Aircraft control based on localization method. In: Preprints of the 2nd IFAC Workshop “Motion Control”, Perugia 1992, vol. 2, pp. 19–24
[4] Błachuta M. J., Yurkevich V. D., Wojciechowski K.: Aircraft motion control by Dynamic Contraction Method. In: Preprints of the International Conference on Recent Advances in Mechatronics – “ICRAM’95”, Istanbul 1995, pp. 404–411
[5] Błachuta M. J., Yurkevich V. D., Wojciechowski K.: Design of aircraft 3D motion control using dynamic contraction method. In: Proceedings of the IFAC Workshop “Motion Control”, Munich 1995, pp. 323–330
[6] Boychuk L. M.: An inverse method of the structural synthesis of automatic control nonlinear systems. Automation 6 (1966), 7–10
[7] Fradkov A. L.: Adaptive Control in Large–Scale Systems. Nauka, Moscow 1990. In Russian | MR | Zbl
[8] Gerashchenko E. I., Gerashchenko S. M.: A Method of Motion Separation and Optimization of Non–Linear Systems. Nauka, Moscow 1975. In Russian | MR
[9] Green W. G.: Logarithmic navigation for precise guidance of space vehicle. IRE Trans. of Aerospace and Navigational Electronics 2 (1961), 54
[10] D P.: Krutko: Inverse Problems of Control System Dynamics: Nonlinear Models. Nauka Phys. & Math. Publ., Moscow 1989. In Russian
[11] Lane S., Stengel R.: Flight control design using non–linear inverse dynamics. Automatica 24 (1988), 471–483 | DOI | MR | Zbl
[12] V M.: Meerov: Automatic control systems which are stable under any large gain. Avtomat. i Telemekh. (1947), 27–31. In Russian
[13] Meerov M. V.: Synthesis of Structures of High–Precision Automatic Control Systems. Nauka, Moscow 1959. In Russian
[14] Petrov B., Krutko P. D.: Synthesis of flight control algorithms based on solutions of inverse dynamics tasks. Izv. Akad. Nauk USSR. Tekhnicheskaya Kibernetika, 2–3 (1981). In Russian
[15] Porter W. A.: Diagonalization and inverse for nonlinear systems. Internat. J. Control 11 (1970), 1, 67–76 | DOI | MR
[16] Reiner J., Balas G., Garrard W.: Robust dynamic inversion for control of highly maneneuverable aircraft. AIAA J. Guidance, Control and Dynamics 18 (1995), 18–24 | DOI
[17] Saksena V., O’Reilly J., Kokotović P.: Singular perturbations and time–scale methods in control theory: survey 1976-1983. Automatica 20 (1984), 273–293 | DOI | MR | Zbl
[18] Shchipanov G. V.: Theory and methods of the automatic controller design. Avtomat. i Telemekh. (1939), 49–66. In Russian
[19] Slotine J.-J., Li W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, N.J. 1991 | Zbl
[20] Snell S., Enns D., Garrard W.: Nonlinear inversion flight control for a supermaneuverable aircraft. In: Proc. of the AIAA Guidance, Navigation and Control Conference, 1990, pp. 808–825
[21] Stevens B., Lewis F.: Aircraft Control and Simulation. Wiley, New York 1992
[22] Tikhonov A. N.: Systems of differential equations with a small parameter in derivatives. Collect. Math. Articles Moscow 31 (1952), 3, 575–586. In Russian
[23] Tsypkin, Ya. Z.: Adaptation and Learning in Automatic Control Systems. Nauka, Moscow 1968. In Russian
[24] Utkin V.: Sliding Modes and their Application in Variable Structure Systems. Mir Publishers, Moscow 1978. In Russian | Zbl
[25] Vostrikov A. S.: On the synthesis of control units of dynamic systems. Systems Sci. 3 (1977), 2, 195–205 | MR | Zbl
[26] Vostrikov A. S., Utkin V. I., Frantsuzova G. A.: Systems with state vector derivative in the control, Automat. Remote Control 43 (1982), 3, Part 1, 283–286 | MR
[27] Vostrikov A. S.: Synthesis of Nonlinear Systems by Means of Localization Method. Novosibirsk University Press, Novosibirsk 1990. In Russian
[28] Vostrikov A. S., Yurkevich V. D.: Decoupling of multi–channel non–linear time–varying systems by derivative feedback. Systems Sci. 17 (1991), 21–33 | MR | Zbl
[29] Vostrikov A. S., Yurkevich V. D.: Design of control systems by means of localisation method. In: Preprints of 12th IFAC World Congress, Sydney 1993, Vol. 8, pp. 47–50 | MR
[30] Vostrikov A. S., Yurkevich V. D.: Design of multi-channel systems with the velocity vector in the control law. Automat. Remote Control 54 (1993), 2, Part 1, 214–226 | MR | Zbl
[31] Vukobratović M., Stojić R.: Modern Aircraft Flight Control. (Lecture Notes in Control and Information Sciences 109.) Springer–Verlag, Berlin 1988 | MR | Zbl
[32] A K.: Wise: Applied controls resarch topics in the aerospace industry. In: Proc. of the 34th Conference on Decision & Control, New Orleans 1995, pp. 751–756
[33] Yurkevich V. D.: Control of uncertain systems: dynamic compaction method. In: Proc. of the 9th Internat. Conference on Systems Engineering, University of Nevada, Las Vegas 1993, pp. 636–640
[34] Yurkevich V. D.: Design of aircraft longitudinal motion control using dynamic compaction method. In: Proc. of 3rd Internat. Workshop on Advanced Motion Control, University of California at Berkeley 1994, pp. 1029–1038
[35] Yurkevich V. D.: On the design of continuous control systems by means of dynamic contraction method: noise influence analysis. In: Proc. of the 2nd Internat. Conference on Actual Problems of Electronic Instrument Engineering (APEIE-94), Novosibirsk 1994, Vol. 4, pp. 75–79
[36] Yurkevich V. D.: Decoupling of uncertain continuous systems: dynamic contraction method. In: Proc. of the 34th Conference on Decision & Control, New Orleans 1995, pp. 96–201