Keywords: approximated model; asymptotic stabilization; vertical heavy flexible beam; simple PD control law; transverse vibrations; mobile mass; active mass damper; lumped masses; position regulation; vibration control
@article{KYB_1999_35_5_a3,
author = {Menini, Laura and Tornamb\`e, Antonio and Zaccarian, Luca},
title = {Global asymptotic stabilisation of an active mass damper for a flexible beam},
journal = {Kybernetika},
pages = {599--612},
year = {1999},
volume = {35},
number = {5},
mrnumber = {1728470},
zbl = {1274.93234},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a3/}
}
TY - JOUR AU - Menini, Laura AU - Tornambè, Antonio AU - Zaccarian, Luca TI - Global asymptotic stabilisation of an active mass damper for a flexible beam JO - Kybernetika PY - 1999 SP - 599 EP - 612 VL - 35 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a3/ LA - en ID - KYB_1999_35_5_a3 ER -
Menini, Laura; Tornambè, Antonio; Zaccarian, Luca. Global asymptotic stabilisation of an active mass damper for a flexible beam. Kybernetika, Tome 35 (1999) no. 5, pp. 599-612. http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a3/
[1] Arimoto S., Miyazaki F.: Stability and robustness of PID feedback control for robot manipulators of sensory capability. In: Robotics Research, First International Symposium (M. Brady and R. P. Paul, eds.), MIT Press, Cambridge 1983, pp. 783–799
[2] Chen G., Delfour M. C., Krall A. M., Payres G.: Modelling, stabilization and control of serially connected beams. SIAM J. Control Optim. 25 (1987), 3, 526–546 | DOI | MR
[3] Conrad F.: Stabilization of beams by pointwise feedback control. SIAM J. Control Optim. 28 (1990), 2, 423–437 | DOI | MR | Zbl
[4] Luca A. De, Siciliano B.: Regulation of flexible arms under gravity. IEEE Trans. Robotics Automat. 9 (1993), 4, 463–467 | DOI
[5] Goldstein H.: Classical Mechanics. Addison Wesley, Reading 1980 | MR | Zbl
[6] Hahn W.: Stability of Motion. Springer-Verlag, Berlin 1967 | MR | Zbl
[7] Kelkar A. G., Suresh M. J., Alberts T. E.: Passivity–based control of nonlinear flexible multibody systems. IEEE Trans. Automat. Control 40 (1995), 5, 910–914 | DOI | MR | Zbl
[8] Krishnan H., Vidyasagar M.: Control of a single flexible beam using a hankel-norm-based reduced order model. In: Proc. IEEE Intern. Conf. on Robotics and Automation, Philadelphia, Pennsylvania 1988, volume 1, p. 9
[9] Laousy H., Xu C. Z., Sallet G.: Boundary feedback stabilization of a rotating body–beam system. IEEE Trans. Automat. Control 41 (1996), 2, 241–245 | DOI | MR | Zbl
[10] Luo Z., Guo B.: Further theoretical results on direct strain feedback control of flexible robot arms. IEEE Trans. Automat. Control 40 (1995), 4, 747–751 | DOI | MR | Zbl
[11] Morgül Ö.: Orientation and stabilization of a flexible beam attached to a rigid body. IEEE Trans. Automat. Control 36 (1991), 8, 953–962 | MR | Zbl
[12] Morris K. A., Vidyasagar M.: A comparison of different models for beam vibrations from the standpoint of control design. J. Dynamic Systems, Measurement, and Control 112 (1990), 349–356 | Zbl
[13] Nijmeijer H., Schaft A. J. van der: Nonlinear Dynamical Control Systems. Springer-Verlag, Berlin 1990 | MR
[14] Xu C. Z., Baillieul J.: Stabilizability and stabilization of a rotating body–beam system with torque control. IEEE Trans. Automat. Control 38 (1993), 12, 1754–1765 | DOI | MR | Zbl