Weighted $\Cal H_\infty$ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control
Kybernetika, Tome 35 (1999) no. 5, pp. 527-554 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper considers the problem of designing near-optimal finite-dimensional controllers for stable multiple-input multiple-output (MIMO) distributed parameter plants under sampled-data control. A weighted $ {\cal H}^\infty $-style mixed-sensitivity measure which penalizes the control is used to define the notion of optimality. Controllers are generated by solving a “natural” finite-dimensional sampled-data optimization. A priori computable conditions are given on the approximants such that the resulting finite- dimensional controllers stabilize the sampled-data controlled distributed parameter plant and are near-optimal. The proof relies on the fact that the control input is appropriately penalized in the optimization. This technique also assumes and exploits the fact that the plant can be approximated uniformly by finite-dimensional systems. Moreover, it is shown how the optimal performance may be estimated to any desired degree of accuracy by solving a single finite-dimensional problem using a suitable finite-dimensional approximant. The constructions given are simple. Finally, it should be noted that no infinite-dimensional spectral factorizations are required. In short, the paper provides a straight forward control design approach for a large class of MIMO distributed parameter systems under sampled-data control.
This paper considers the problem of designing near-optimal finite-dimensional controllers for stable multiple-input multiple-output (MIMO) distributed parameter plants under sampled-data control. A weighted $ {\cal H}^\infty $-style mixed-sensitivity measure which penalizes the control is used to define the notion of optimality. Controllers are generated by solving a “natural” finite-dimensional sampled-data optimization. A priori computable conditions are given on the approximants such that the resulting finite- dimensional controllers stabilize the sampled-data controlled distributed parameter plant and are near-optimal. The proof relies on the fact that the control input is appropriately penalized in the optimization. This technique also assumes and exploits the fact that the plant can be approximated uniformly by finite-dimensional systems. Moreover, it is shown how the optimal performance may be estimated to any desired degree of accuracy by solving a single finite-dimensional problem using a suitable finite-dimensional approximant. The constructions given are simple. Finally, it should be noted that no infinite-dimensional spectral factorizations are required. In short, the paper provides a straight forward control design approach for a large class of MIMO distributed parameter systems under sampled-data control.
Classification : 93B36, 93B51, 93C35, 93C57
Keywords: MIMO; distributed parameter system; sampled-data control; finite-dimensional controllers; finite-dimensional systems
@article{KYB_1999_35_5_a0,
     author = {Carter, Delano R. and Rodriguez, Armando A.},
     title = {Weighted $\Cal H_\infty$ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control},
     journal = {Kybernetika},
     pages = {527--554},
     year = {1999},
     volume = {35},
     number = {5},
     mrnumber = {1728467},
     zbl = {1274.93183},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a0/}
}
TY  - JOUR
AU  - Carter, Delano R.
AU  - Rodriguez, Armando A.
TI  - Weighted $\Cal H_\infty$ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control
JO  - Kybernetika
PY  - 1999
SP  - 527
EP  - 554
VL  - 35
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a0/
LA  - en
ID  - KYB_1999_35_5_a0
ER  - 
%0 Journal Article
%A Carter, Delano R.
%A Rodriguez, Armando A.
%T Weighted $\Cal H_\infty$ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control
%J Kybernetika
%D 1999
%P 527-554
%V 35
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a0/
%G en
%F KYB_1999_35_5_a0
Carter, Delano R.; Rodriguez, Armando A. Weighted $\Cal H_\infty$ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control. Kybernetika, Tome 35 (1999) no. 5, pp. 527-554. http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a0/

[1] Bamieh B. A., Pearson J. B.: A general framework for linear periodic systems with applications to ${\mathcal H}^\infty $ sampled–data control. IEEE Trans. Automat. Control 37 (1992), 418–435 | DOI | MR

[2] Boyd, S .P., Balakrishnan V., Kabamba P.: A bisection method for computing the ${\mathcal H}^\infty $ norm of a transfer matrix and related problems. Math. Control Signals Systems 2 (1989), 207–219 | DOI | MR

[3] Callier F. M., Desoer C. A.: An algebra of transfer functions for distributed linear time–invariant systems. IEEE Trans. Circuits and Systems 25 (1978), 9, 651–662 | DOI | MR | Zbl

[4] Cantoni M. W., Glover K.: A design framework for continuous–time systems under sampled–data control. In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 458–463

[5] Chen T., Francis B.: ${\mathcal H}^2$-optimal Sampled–Data Control. Technical Report No. 9001, Dept. Elect. Eng., Univ. Toronto, 1990 | MR

[6] Chen T., Francis B.: Optimal Sampled–Data Control Systems. Springer–Verlag, London – New York 1995 | MR | Zbl

[7] Conway J. B.: A Course in Functional Analysis. Springer–Verlag, Berlin 1990 | MR | Zbl

[8] Desoer C. A., Vidyasagar M.: Feedback Systems: Input–Output Properties. Academic Press, NY 1975 | MR | Zbl

[9] Dullerud G. E.: Control of Uncertain Sampled–Data Systems. Birkhäuser, Boston 1996 | MR | Zbl

[10] Flamm D. S., Mitter S. K.: Approximation of ideal compensators for delay systems. In: Linear Circuits, Systems and Signal Processing: Theory and Applications (C. I. Byrnes, C. F. Martin and R. E. Saeks, eds.), Elsevier Science Publishers B. V., 1988, pp. 517–524 | MR | Zbl

[11] Foias C., Francis B., Helton J. W., Kwakernaak H., Pearson J. B.: ${\mathcal H}^\infty $-Control Theory. (Lecture Notes in Mathematics 1496.) Springer-Verlag, Berlin 1991

[12] Foias C., Özbay H., Tannenbaum A.: Robust Control of Infinite Dimensional Systems. (Lecture Notes in Control and Information Sciences.) Springer–Verlag, Berlin 1996 | MR | Zbl

[13] Francis B. A.: A Course in Control Theory. Springer-Verlag, Berlin 1987 | MR

[14] Gibson J. S., Adamian A.: Approximation theory for linear–quadratic–gaussian optimal control of flexible structures. SIAM J. Control Optim. 29 (1991), 1, 1–37 | DOI | MR | Zbl

[15] Gibson J. S., Rosen I. G.: Numerical approximation for the infinite–dimensional discrete–time optimal linear–quadratic regulator problem. SIAM J. Control Optim. 26 (1988), 2, 428–451 | DOI | MR | Zbl

[16] Glader C., Högnäs G., Mäkilä P. M., Toivonen H. T.: Approximation of delay systems – a case study. Internat. J. Control 53 (1991), 2, 369–390 | DOI | MR | Zbl

[17] Glover K.: All optimal Hankel–norm approximations of linear multivariable systems and their ${\mathcal L}^\infty $-error bounds. Internat. J. Control 39 (1984), 6, 1115–1193 | DOI | MR

[18] Glover K., Curtain R. F., Partington J. R.: Realisation and approximation of linear infinite–dimensional systems with error bounds. SIAM J. Control Optim. 26 (1988), 4, 863–898 | DOI | MR | Zbl

[19] Glover K., Lam J., Partington J. R.: Rational approximation of a class of infinite–dimensional systems. I: singular values of Hankel operators. Math. Control Signals Systems 4 (1990), 325–344 | DOI | MR | Zbl

[20] Glover K., Lam J., Partington J. R.: Rational approximation of a class of infinite–dimensional systems. II: optimal convergence rates of ${\mathcal L}^\infty $ approximants. Math. Control Signals Systems 4 (1991), 233–246 | DOI | MR | Zbl

[21] Gu G., Khargonekar P. P., Lee E. B.: Approximation of infinite–dimensional systems. IEEE Trans. Automat. Control 34 (1989), 6, 610–618 | DOI | MR | Zbl

[22] Ichikawa A.: The semigroup approach to ${\mathcal H}^2$ and ${\mathcal H}^\infty $-control for sampled–data systems with first–order hold. In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 452–457

[23] Ito K.: Finite–dimensional compensators for infinite-dimensional systems via Galerkin–type approximation. SIAM J. Control Optim. 28 (1990), 6, 1251–1269 | DOI | MR | Zbl

[24] Kabamba P. T., Hara S.: Worst–case analysis and design of sampled–data control systems. IEEE Trans. Automat. Control 38 (1993), 1337–1357 | DOI | MR | Zbl

[25] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Stabilization of time delay systems with finite–dimensional compensators. IEEE Trans. Automat. Control 30 (1985), 75–78 | DOI | MR

[26] Lenz K., Ozbay H., Tannenbaum A., Turi J., Morton B.: Robust control design for a flexible beam using a distributed parameter ${\mathcal H}^\infty $ method. In: CDC, Tampa 1989 | MR

[27] Logemann H., Townley S.: Adaptive low–gain sampled–data control of DPS. In: Proceedings of the 34th Conference on Decision and Control, New Orleans 1995, pp, 2946–2947

[28] Mäkilä P. M.: Laguerre series approximation of infinite dimensional systems. Automatica 26 (1990), 6, 985–995 | DOI | MR | Zbl

[29] McFarlane D. C., Glover K.: Robust Controller Design Using Normalized Coprime Factor Plant Descriptions. Springer–Verlag, Berlin 1990 | MR | Zbl

[30] Rodriguez A. A., Dahleh M. A.: Weighted ${\mathcal H}^\infty $ optimization for stable infinite–dimensional systems using finite–dimensional techniques. In: Proceedings of the 29th IEEE CDC, Honolulu 1990, pp. 1814–1820

[31] Rodriguez A. A., Dahleh M. A.: On the computation of induced norms for non–compact Hankel operators arising from distributed control problems. Systems Control Lett. 19 (1992), 429–438 | DOI | MR | Zbl

[32] Rosen I. G.: Optimal discrete–time LQR problems for parabolic systems with unbounded input – approximation and convergence. Control Theory Adv. Tech. 5 (1989), 227–300 | MR

[33] Rosen I. G., Wang C.: On the continuous dependence with respect to sampling of the linear quadratic regulator problem for distributed parameter systems. SIAM J. Control Optim. 30 (1992), 4, 942–974 | DOI | MR | Zbl

[34] Rosen I. G., Wang C.: On stabilizability and sampling for infinite dimensional systems. IEEE Trans. Automat. Control 37 (1992), 10, 1653–1656 | DOI | MR | Zbl

[35] Royden H. L.: Real Analysis. MacMillan Publishing Co, Inc, 1968 | MR

[36] Sågfors M. F., Toivonen H. T.: The sampled–data ${\mathcal H}^\infty $ problem: The equivalence of discretization–based methods and a Riccati equation solution. In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 428–433

[37] Smith M.: Well–posedness of ${\mathcal H}^\infty $ optimal control problems. SIAM J. Control Optim. 28 (1990), 342–358 | DOI | MR

[38] Sun W., Nagpal K. M., Khargonekar P. P.: ${\mathcal H}^\infty $ control and filtering for sampled–data systems. IEEE Trans. Automat. Control 38 (1993), 1162–1175 | DOI | MR

[39] Sz.-Nagy B., Foiaş C.: Harmonic Analysis of Operators on Hilbert Space. North–Holland, Amsterdam 1970 | MR | Zbl

[40] Tadmor G.: ${\mathcal H}^\infty $ optimal sampled–data control in continuous time systems. Internat. J. Control 56 (1992), 1, 99–141 | DOI | MR

[41] Toivonen H. T.: Sampled–data control of continuous–time systems with an ${\mathcal H}^\infty $ optimality criterion. Automatica 28 (1992), 45–54 | DOI | MR

[42] Vidyasagar M.: Control Systems Synthesis: A Factorization Approach. MIT Press, Cambrdige MA 1985

[43] Yamamoto Y.: A function space approach to sampled–data control systems and tracking problem. IEEE Trans. Automat. Control 39 (1994), 703–713 | DOI | MR

[44] Yue D., Liu Y., Xu S.: Finite–dimensional compensator for a class of uncertain distributed parameter systems. Internat. J. Systems Sci. 26 (1995), 12, 2383–2390 | DOI | Zbl

[45] Youla D. C., Jabr H. A., Bongiorno J. J.: Modern Wiener–Hopf design of optimal controllers. Part 2: The multivariable case. IEEE Trans. Automat. Control 21 (1976), 319–338 | DOI | MR | Zbl