Keywords: MIMO; distributed parameter system; sampled-data control; finite-dimensional controllers; finite-dimensional systems
@article{KYB_1999_35_5_a0,
author = {Carter, Delano R. and Rodriguez, Armando A.},
title = {Weighted $\Cal H_\infty$ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control},
journal = {Kybernetika},
pages = {527--554},
year = {1999},
volume = {35},
number = {5},
mrnumber = {1728467},
zbl = {1274.93183},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a0/}
}
TY - JOUR AU - Carter, Delano R. AU - Rodriguez, Armando A. TI - Weighted $\Cal H_\infty$ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control JO - Kybernetika PY - 1999 SP - 527 EP - 554 VL - 35 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a0/ LA - en ID - KYB_1999_35_5_a0 ER -
%0 Journal Article %A Carter, Delano R. %A Rodriguez, Armando A. %T Weighted $\Cal H_\infty$ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control %J Kybernetika %D 1999 %P 527-554 %V 35 %N 5 %U http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a0/ %G en %F KYB_1999_35_5_a0
Carter, Delano R.; Rodriguez, Armando A. Weighted $\Cal H_\infty$ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control. Kybernetika, Tome 35 (1999) no. 5, pp. 527-554. http://geodesic.mathdoc.fr/item/KYB_1999_35_5_a0/
[1] Bamieh B. A., Pearson J. B.: A general framework for linear periodic systems with applications to ${\mathcal H}^\infty $ sampled–data control. IEEE Trans. Automat. Control 37 (1992), 418–435 | DOI | MR
[2] Boyd, S .P., Balakrishnan V., Kabamba P.: A bisection method for computing the ${\mathcal H}^\infty $ norm of a transfer matrix and related problems. Math. Control Signals Systems 2 (1989), 207–219 | DOI | MR
[3] Callier F. M., Desoer C. A.: An algebra of transfer functions for distributed linear time–invariant systems. IEEE Trans. Circuits and Systems 25 (1978), 9, 651–662 | DOI | MR | Zbl
[4] Cantoni M. W., Glover K.: A design framework for continuous–time systems under sampled–data control. In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 458–463
[5] Chen T., Francis B.: ${\mathcal H}^2$-optimal Sampled–Data Control. Technical Report No. 9001, Dept. Elect. Eng., Univ. Toronto, 1990 | MR
[6] Chen T., Francis B.: Optimal Sampled–Data Control Systems. Springer–Verlag, London – New York 1995 | MR | Zbl
[7] Conway J. B.: A Course in Functional Analysis. Springer–Verlag, Berlin 1990 | MR | Zbl
[8] Desoer C. A., Vidyasagar M.: Feedback Systems: Input–Output Properties. Academic Press, NY 1975 | MR | Zbl
[9] Dullerud G. E.: Control of Uncertain Sampled–Data Systems. Birkhäuser, Boston 1996 | MR | Zbl
[10] Flamm D. S., Mitter S. K.: Approximation of ideal compensators for delay systems. In: Linear Circuits, Systems and Signal Processing: Theory and Applications (C. I. Byrnes, C. F. Martin and R. E. Saeks, eds.), Elsevier Science Publishers B. V., 1988, pp. 517–524 | MR | Zbl
[11] Foias C., Francis B., Helton J. W., Kwakernaak H., Pearson J. B.: ${\mathcal H}^\infty $-Control Theory. (Lecture Notes in Mathematics 1496.) Springer-Verlag, Berlin 1991
[12] Foias C., Özbay H., Tannenbaum A.: Robust Control of Infinite Dimensional Systems. (Lecture Notes in Control and Information Sciences.) Springer–Verlag, Berlin 1996 | MR | Zbl
[13] Francis B. A.: A Course in Control Theory. Springer-Verlag, Berlin 1987 | MR
[14] Gibson J. S., Adamian A.: Approximation theory for linear–quadratic–gaussian optimal control of flexible structures. SIAM J. Control Optim. 29 (1991), 1, 1–37 | DOI | MR | Zbl
[15] Gibson J. S., Rosen I. G.: Numerical approximation for the infinite–dimensional discrete–time optimal linear–quadratic regulator problem. SIAM J. Control Optim. 26 (1988), 2, 428–451 | DOI | MR | Zbl
[16] Glader C., Högnäs G., Mäkilä P. M., Toivonen H. T.: Approximation of delay systems – a case study. Internat. J. Control 53 (1991), 2, 369–390 | DOI | MR | Zbl
[17] Glover K.: All optimal Hankel–norm approximations of linear multivariable systems and their ${\mathcal L}^\infty $-error bounds. Internat. J. Control 39 (1984), 6, 1115–1193 | DOI | MR
[18] Glover K., Curtain R. F., Partington J. R.: Realisation and approximation of linear infinite–dimensional systems with error bounds. SIAM J. Control Optim. 26 (1988), 4, 863–898 | DOI | MR | Zbl
[19] Glover K., Lam J., Partington J. R.: Rational approximation of a class of infinite–dimensional systems. I: singular values of Hankel operators. Math. Control Signals Systems 4 (1990), 325–344 | DOI | MR | Zbl
[20] Glover K., Lam J., Partington J. R.: Rational approximation of a class of infinite–dimensional systems. II: optimal convergence rates of ${\mathcal L}^\infty $ approximants. Math. Control Signals Systems 4 (1991), 233–246 | DOI | MR | Zbl
[21] Gu G., Khargonekar P. P., Lee E. B.: Approximation of infinite–dimensional systems. IEEE Trans. Automat. Control 34 (1989), 6, 610–618 | DOI | MR | Zbl
[22] Ichikawa A.: The semigroup approach to ${\mathcal H}^2$ and ${\mathcal H}^\infty $-control for sampled–data systems with first–order hold. In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 452–457
[23] Ito K.: Finite–dimensional compensators for infinite-dimensional systems via Galerkin–type approximation. SIAM J. Control Optim. 28 (1990), 6, 1251–1269 | DOI | MR | Zbl
[24] Kabamba P. T., Hara S.: Worst–case analysis and design of sampled–data control systems. IEEE Trans. Automat. Control 38 (1993), 1337–1357 | DOI | MR | Zbl
[25] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Stabilization of time delay systems with finite–dimensional compensators. IEEE Trans. Automat. Control 30 (1985), 75–78 | DOI | MR
[26] Lenz K., Ozbay H., Tannenbaum A., Turi J., Morton B.: Robust control design for a flexible beam using a distributed parameter ${\mathcal H}^\infty $ method. In: CDC, Tampa 1989 | MR
[27] Logemann H., Townley S.: Adaptive low–gain sampled–data control of DPS. In: Proceedings of the 34th Conference on Decision and Control, New Orleans 1995, pp, 2946–2947
[28] Mäkilä P. M.: Laguerre series approximation of infinite dimensional systems. Automatica 26 (1990), 6, 985–995 | DOI | MR | Zbl
[29] McFarlane D. C., Glover K.: Robust Controller Design Using Normalized Coprime Factor Plant Descriptions. Springer–Verlag, Berlin 1990 | MR | Zbl
[30] Rodriguez A. A., Dahleh M. A.: Weighted ${\mathcal H}^\infty $ optimization for stable infinite–dimensional systems using finite–dimensional techniques. In: Proceedings of the 29th IEEE CDC, Honolulu 1990, pp. 1814–1820
[31] Rodriguez A. A., Dahleh M. A.: On the computation of induced norms for non–compact Hankel operators arising from distributed control problems. Systems Control Lett. 19 (1992), 429–438 | DOI | MR | Zbl
[32] Rosen I. G.: Optimal discrete–time LQR problems for parabolic systems with unbounded input – approximation and convergence. Control Theory Adv. Tech. 5 (1989), 227–300 | MR
[33] Rosen I. G., Wang C.: On the continuous dependence with respect to sampling of the linear quadratic regulator problem for distributed parameter systems. SIAM J. Control Optim. 30 (1992), 4, 942–974 | DOI | MR | Zbl
[34] Rosen I. G., Wang C.: On stabilizability and sampling for infinite dimensional systems. IEEE Trans. Automat. Control 37 (1992), 10, 1653–1656 | DOI | MR | Zbl
[35] Royden H. L.: Real Analysis. MacMillan Publishing Co, Inc, 1968 | MR
[36] Sågfors M. F., Toivonen H. T.: The sampled–data ${\mathcal H}^\infty $ problem: The equivalence of discretization–based methods and a Riccati equation solution. In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 428–433
[37] Smith M.: Well–posedness of ${\mathcal H}^\infty $ optimal control problems. SIAM J. Control Optim. 28 (1990), 342–358 | DOI | MR
[38] Sun W., Nagpal K. M., Khargonekar P. P.: ${\mathcal H}^\infty $ control and filtering for sampled–data systems. IEEE Trans. Automat. Control 38 (1993), 1162–1175 | DOI | MR
[39] Sz.-Nagy B., Foiaş C.: Harmonic Analysis of Operators on Hilbert Space. North–Holland, Amsterdam 1970 | MR | Zbl
[40] Tadmor G.: ${\mathcal H}^\infty $ optimal sampled–data control in continuous time systems. Internat. J. Control 56 (1992), 1, 99–141 | DOI | MR
[41] Toivonen H. T.: Sampled–data control of continuous–time systems with an ${\mathcal H}^\infty $ optimality criterion. Automatica 28 (1992), 45–54 | DOI | MR
[42] Vidyasagar M.: Control Systems Synthesis: A Factorization Approach. MIT Press, Cambrdige MA 1985
[43] Yamamoto Y.: A function space approach to sampled–data control systems and tracking problem. IEEE Trans. Automat. Control 39 (1994), 703–713 | DOI | MR
[44] Yue D., Liu Y., Xu S.: Finite–dimensional compensator for a class of uncertain distributed parameter systems. Internat. J. Systems Sci. 26 (1995), 12, 2383–2390 | DOI | Zbl
[45] Youla D. C., Jabr H. A., Bongiorno J. J.: Modern Wiener–Hopf design of optimal controllers. Part 2: The multivariable case. IEEE Trans. Automat. Control 21 (1976), 319–338 | DOI | MR | Zbl