@article{KYB_1999_35_4_a8,
author = {Jan\v{z}ura, Martin},
title = {Asymptotic {R\'enyi} distances for random fields: properties and applications},
journal = {Kybernetika},
pages = {507--525},
year = {1999},
volume = {35},
number = {4},
mrnumber = {1723573},
zbl = {1274.62062},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a8/}
}
Janžura, Martin. Asymptotic Rényi distances for random fields: properties and applications. Kybernetika, Tome 35 (1999) no. 4, pp. 507-525. http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a8/
[1] Csiszár I.: Information–type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hungar. 2 (1967), 299–318 | MR | Zbl
[2] Dembo A., Zeitouni O.: Large Deviations Techniques and Applications. Jones and Bartlett Publishers, Boston 1993 | MR | Zbl
[3] Georgii H. O.: Gibbs Measures and Place Transitions. De Gruyter, Berlin 1988 | MR
[4] Janžura M.: Large deviations theorem for Gibbs random fields. In: Proc. 5th Pannonian Symp. on Math. Statist. (W. Grossmann, J. Mogyorodi, I. Vincze and W. Wertz, eds.), Akadémiai Kiadó, Budapest 1987, pp. 97–112 | MR
[5] Janžura M.: Asymptotic behaviour of the error probabilities in the pseudo–likelihood ratio test for Gibbs–Markov distributions. In: Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Physica–Verlag 1994, pp. 285–296 | MR
[6] Janžura M.: On the concept of asymptotic Rényi distances for random fields. Kybernetika 5 (1999), 3, 353–366
[7] Liese F., Vajda I.: Convex Statistical Problems. Teubner, Leipzig 1987 | MR
[8] Perez A.: Risk estimates in terms of generalized $f$–entropies. In: Proc. Coll. on Inform. Theory (A. Rényi, ed.), Budapest 1968 | MR
[9] Rényi A.: On measure of entropy and information. In: Proc. 4th Berkeley Symp. Math. Statist. Prob., Univ of Calif. Press, Berkeley 1961, Vol. 1, pp. 547–561 | MR
[10] Vajda I.: On the $f$–divergence and singularity of probability measures. Period. Math. Hungar. 2 (1972), 223–234 | DOI | MR | Zbl
[11] Vajda I.: The Theory of Statistical Inference and Information. Kluwer, Dordrecht – Boston – London 1989
[12] Younès L.: Parametric inference for imperfectly observed Gibbsian fields. Probab. Theory Related Fields 82 (1989), 625–645 | DOI | MR