On noncooperative nonlinear differential games
Kybernetika, Tome 35 (1999) no. 4, pp. 487-498 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Noncooperative games with systems governed by nonlinear differential equations remain, in general, nonconvex even if continuously extended (i. e. relaxed) in terms of Young measures. However, if the individual payoff functionals are “enough” uniformly convex and the controlled system is only “slightly” nonlinear, then the relaxed game enjoys a globally convex structure, which guarantees existence of its Nash equilibria as well as existence of approximate Nash equilibria (in a suitable sense) for the original game.
Noncooperative games with systems governed by nonlinear differential equations remain, in general, nonconvex even if continuously extended (i. e. relaxed) in terms of Young measures. However, if the individual payoff functionals are “enough” uniformly convex and the controlled system is only “slightly” nonlinear, then the relaxed game enjoys a globally convex structure, which guarantees existence of its Nash equilibria as well as existence of approximate Nash equilibria (in a suitable sense) for the original game.
Classification : 49N70, 91A10, 91A23
Keywords: noncooperative games; Nash equilibria; differential games; globally convex structure
@article{KYB_1999_35_4_a6,
     author = {Roub{\'\i}\v{c}ek, Tom\'a\v{s}},
     title = {On noncooperative nonlinear differential games},
     journal = {Kybernetika},
     pages = {487--498},
     year = {1999},
     volume = {35},
     number = {4},
     mrnumber = {1723581},
     zbl = {1274.91073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a6/}
}
TY  - JOUR
AU  - Roubíček, Tomáš
TI  - On noncooperative nonlinear differential games
JO  - Kybernetika
PY  - 1999
SP  - 487
EP  - 498
VL  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a6/
LA  - en
ID  - KYB_1999_35_4_a6
ER  - 
%0 Journal Article
%A Roubíček, Tomáš
%T On noncooperative nonlinear differential games
%J Kybernetika
%D 1999
%P 487-498
%V 35
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a6/
%G en
%F KYB_1999_35_4_a6
Roubíček, Tomáš. On noncooperative nonlinear differential games. Kybernetika, Tome 35 (1999) no. 4, pp. 487-498. http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a6/

[1] Balder E. J.: On a useful compactification for optimal control problems. J. Math. Anal. Appl. 72 (1979), 391–398 | DOI | MR | Zbl

[2] Balder E. J.: A general denseness result for relaxed control theory. Bull. Austral. Math. Soc. 30 (1984), 463–475 | DOI | MR | Zbl

[3] Balder E. J.: Generalized equilibrium results for games with incomplete information. Math. Oper Res. 13 (1988), 265–276 | DOI | MR | Zbl

[4] Bensoussan A.: Points de Nash dans le cas de fonctionnelles quadratiques et jeux differentiels lineaires a $n$ personnes. SIAM J. Control 12 (1974), 460–499 | DOI | MR | Zbl

[5] Gabasov R., Kirillova F.: Qualitative Theory of Optimal Processes. Nauka, Moscow 1971 | MR | Zbl

[7] Kindler J.: Equilibrium point theorems for two-person games. SIAM J. Control Optim. 22 (1984), 671–683 | DOI | MR | Zbl

[8] Krasovskiĭ N. N., Subbotin A. I.: Game Theoretical Control Problems. Springer, Berlin 1988 | MR | Zbl

[9] Lenhart S., Protopopescu V., Stojanovic S.: A minimax problem for semilinear nonlocal competitive systems. Appl. Math. Optim. 28 (1993), 113–132 | DOI | MR | Zbl

[10] Nash J.: Non–cooperative games. Ann. of Math. 54 (1951), 286–295 | DOI | MR | Zbl

[11] Nikaidô H., Isoda K.: Note on non–cooperative equilibria. Pacific J. Math. 5 (1955), 807–815 | DOI | MR

[12] Nikol’skiĭ M. S.: On a minimax control problem. In: Optimal Control and Differential Games (L. S. Pontryagin, ed.), Proc. Steklov Inst. Math. 1990, pp. 209–214

[13] Nowak A. S.: Correlated relaxed equilibria in nonzero–sum linear differential games. J. Math. Anal. Appl. 163 (1992), 104–112 | DOI | MR | Zbl

[14] Patrone F.: Well–posedness for Nash equilibria and related topics. In: Recent Developments in Well–Posed Variational Problems (R. Lucchetti and J. Revalski, eds.), Kluwer, 1995, pp. 211–227 | MR | Zbl

[15] Roubíček T.: Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin 1997 | MR

[16] Roubíček T.: Noncooperative games with elliptic systems. In: Proc. IFIP WG 7.2 Conf. Control of P.D.E., Chemnitz 1998, accepted | MR

[17] Sainte–Beuve M.-F.: Some topological properties of vector measures with bounded variations and its applications. Ann. Mat. Pura Appl. 116 (1978), 317–379 | MR

[18] Schmidt W. H.: Maximum principles for processes governed by integral equations in Banach spaces as sufficient optimality conditions. Beiträge zur Analysis 17 (1981), 85–93 | MR | Zbl

[19] Tan K. K., Yu J., Yuan X. Z.: Existence theorems of Nash equilibria for non–cooperative $n$–person games. Internat. J. Game Theory 24 (1995), 217–222 | DOI | MR | Zbl

[20] Tijs S. H.: Nash equilibria for noncooperative $n$-person game in normal form. SIAM Rev. 23 (1981), 225–237 | DOI | MR

[21] Warga J.: Optimal Control of Differential and Functional Equations. Academic Press, New York 1972 | MR | Zbl

[22] Young L. C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937), 212–234 | Zbl