Keywords: predictive control; LQ controller; discrete-time control system; control design; Youla-Kucera parametrization
@article{KYB_1999_35_4_a4,
author = {Fikar, Miroslav and Engell, Sebastian and Dost\'al, Petr},
title = {Design of predictive {LQ} controller},
journal = {Kybernetika},
pages = {459--472},
year = {1999},
volume = {35},
number = {4},
mrnumber = {1723589},
zbl = {1274.93089},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a4/}
}
Fikar, Miroslav; Engell, Sebastian; Dostál, Petr. Design of predictive LQ controller. Kybernetika, Tome 35 (1999) no. 4, pp. 459-472. http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a4/
[1] Clarke D. W., Mohtadi, C., Tuffs P. S.: Generalized predictive control. Part I. The basic algorithm. Automatica 23 (1987), 2, 137–148 | DOI | Zbl
[2] Clarke D. W., Mohtadi, C., Tuffs P. S.: Generalized predictive control. Part II: Extensions and interpretations. Automatica 23 (1987), 2, 149–160 | DOI | Zbl
[3] Clarke D. W., Scattolini R.: Constrained receding–horizon predictive control. IEE Proc. D 138 (1991), 4, 347–354 | DOI | Zbl
[4] Fikar M., Engell S.: Receding horizon predictive control based upon Youla – Kučera parametrization. European J. Control 3 (1997), 4, 304–316 | DOI
[5] Horn R. A., Johnson C. R.: Matrix Analysis. Cambridge University Press 1985 | MR | Zbl
[6] Hunt K. J., Šebek M.: Implied polynomial matrix equations in multivariable stochastic optimal control. Automatica 27 (1991), 2, 395–398 | DOI | MR | Zbl
[7] Kučera V.: Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979 | MR | Zbl
[8] Kučera V.: Analysis and Design of Discrete Linear Control Systems. Prentice Hall, Englewood Cliffs, N. J. 1991 | MR | Zbl
[9] McIntosh A. R., Shah S. L., Fisher D. G.: Analysis and tuning of adaptive generalized predictive control. Canad. J. Chem. Engrg. 69 (1991), 97–110 | DOI
[10] Middleton R., Goodwin G. C.: Digital Control and Estimation. A Unified Approach. Prentice Hall, Englewood Cliffs, N. J. 1990 | Zbl
[11] Mosca E., Zhang J.: Stable redesign of predictive control. Automatica 28 (1992), 1229–1233 | DOI | MR | Zbl
[12] Rawlings J. B., Muske K. R.: The stability of constrained receding horizon control. IEEE Trans. Automat. Control 38 (1993), 10, 1512–1516 | DOI | MR | Zbl
[13] Rossiter J. A., Gossner J. R., Kouvaritakis B.: Infinite horizon stable predictive control. IEEE Trans. Automat. Control 41 (1996), 10, 1522–1527 | DOI | MR | Zbl
[14] Rossiter J. A., Kouvaritakis B.: Constrained stable generalised predictive control. IEE Proc. D 140 (1993), 4, 243–254 | Zbl
[15] Rossiter J. A., Kouvaritakis, B., Gossner J. R.: Feasibility and stability results for constrained stable predictive control. Automatica 31 (1995), 3, 863–877 | DOI | MR
[16] Scokaert P. O. M., Clarke D. W.: Stabilizing properties of constrained predictive control. IEE Proc. – Control Theory Appl. 141 (1994), 5, 295–304
[17] Scokaert P. O. M., Rawlings J. B.: Infinite horizon linear quadratic control with constraints. In: 13th Triennal World Congress IFAC, San Francisco 1996, Volume M, pp. 109–114
[18] Šebek M.: Direct polynomial approach to discrete–time stochastic tracking. Problems Control Inform. Theory 12 (1983), 293–302 | MR | Zbl
[19] Zafiriou E., Chiou H. W.: On the dynamic resiliency of constrained processes. Comput. Chem. Engrg. 20 (1996), 4, 347–355 | DOI
[20] Zheng A., Morari M.: Stability of model predictive control with mixed constraints. IEEE Trans. Automat. Control 40 (1995), 10, 1818–1823 | DOI | MR | Zbl