Robust and reliable $H_\infty$ output feedback control for linear systems with parameter uncertainty and actuator failure
Kybernetika, Tome 35 (1999) no. 4, pp. 429-440 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The robust and reliable $H_{\infty }$ output feedback controller design problem is investigated for uncertain linear systems with actuator failures within a prespecified subset of actuators. The uncertainty considered here is time- varying norm-bounded parameter uncertainty in the state matrix. The output of a faulty actuator is assumed to be any arbitrary energy-bounded signal. An observer-based output feedback controller design is presented which stabilizes the plant and guarantees an $H_{\infty }$-norm bound on attenuation of augmented disturbances, for all admissible uncertainties as well as actuator failures. The construction of the observer-based output feedback control law requires the positive-definite solutions of two algebraic Riccati equations. The result can be regarded as an extension of existing results on robust $H_{\infty }$ control and reliable $H_{\infty }$ control of uncertain linear systems.
The robust and reliable $H_{\infty }$ output feedback controller design problem is investigated for uncertain linear systems with actuator failures within a prespecified subset of actuators. The uncertainty considered here is time- varying norm-bounded parameter uncertainty in the state matrix. The output of a faulty actuator is assumed to be any arbitrary energy-bounded signal. An observer-based output feedback controller design is presented which stabilizes the plant and guarantees an $H_{\infty }$-norm bound on attenuation of augmented disturbances, for all admissible uncertainties as well as actuator failures. The construction of the observer-based output feedback control law requires the positive-definite solutions of two algebraic Riccati equations. The result can be regarded as an extension of existing results on robust $H_{\infty }$ control and reliable $H_{\infty }$ control of uncertain linear systems.
Classification : 93B36, 93B52, 93C05, 93C41
Keywords: design problem; parameter uncertainty; linear systems; stabilization; algebraic Riccati equations; $H_\infty$ output feedback control
@article{KYB_1999_35_4_a2,
     author = {Seo, Chang-Jun and Kim, Byung Kook},
     title = {Robust and reliable $H_\infty$ output feedback control for linear systems with parameter uncertainty and actuator failure},
     journal = {Kybernetika},
     pages = {429--440},
     year = {1999},
     volume = {35},
     number = {4},
     mrnumber = {1723518},
     zbl = {1274.93109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a2/}
}
TY  - JOUR
AU  - Seo, Chang-Jun
AU  - Kim, Byung Kook
TI  - Robust and reliable $H_\infty$ output feedback control for linear systems with parameter uncertainty and actuator failure
JO  - Kybernetika
PY  - 1999
SP  - 429
EP  - 440
VL  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a2/
LA  - en
ID  - KYB_1999_35_4_a2
ER  - 
%0 Journal Article
%A Seo, Chang-Jun
%A Kim, Byung Kook
%T Robust and reliable $H_\infty$ output feedback control for linear systems with parameter uncertainty and actuator failure
%J Kybernetika
%D 1999
%P 429-440
%V 35
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a2/
%G en
%F KYB_1999_35_4_a2
Seo, Chang-Jun; Kim, Byung Kook. Robust and reliable $H_\infty$ output feedback control for linear systems with parameter uncertainty and actuator failure. Kybernetika, Tome 35 (1999) no. 4, pp. 429-440. http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a2/

[1] Khargonekar P. P., Petersen I. R., Zhou K.: Robust stabilization of uncertain linear systems: Quadratic stabilization and $H_{\infty }$ control theory. IEEE Trans. Automat. Control 35 (1990), 356–361 | DOI | MR

[2] Veillette R. J., Medanic J. V., Perkins W. R.: Robust stabilization and disturbance rejection for systems with structured uncertainty. In: Proc. 28th IEEE Conf. on Decision and Control, Tampa FL 1989, pp. 934–941 | MR

[3] Veillette R. J., Medanic J. V., Perkins W. R.: Design of reliable control systems. IEEE Trans. Automat. Control 37 (1992), 290–304 | DOI | MR | Zbl

[4] Xie L., Souza C. E. de: Robust $H_{\infty }$ control for a class of uncertain linear time-invariant systems. IEE Proc. D 138 (1991), 479–483 | DOI

[5] Xie L., Souza C. E. de: Robust $H_{\infty }$ control for linear systems with norm–bounded time–varying uncertainty. IEEE Trans. Automat. Control 37 (1992), 1188–1191 | DOI | MR

[6] Zhou K., Khargonekar P. P.: Robust stabilization of linear systems with norm–bounded time–varying uncertainty. Systems Control Lett. 10 (1988), 17–20 | DOI | MR | Zbl