Keywords: uniform observability; drift-observability; affine nonlinear system
@article{KYB_1999_35_4_a0,
author = {Germani, Alfredo and Manes, Costanzo},
title = {State observers for nonlinear systems with smooth/bounded input},
journal = {Kybernetika},
pages = {393--413},
year = {1999},
volume = {35},
number = {4},
mrnumber = {1723526},
zbl = {1274.93118},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a0/}
}
Germani, Alfredo; Manes, Costanzo. State observers for nonlinear systems with smooth/bounded input. Kybernetika, Tome 35 (1999) no. 4, pp. 393-413. http://geodesic.mathdoc.fr/item/KYB_1999_35_4_a0/
[1] Besancon G., Hammouri H.: On uniform observation of nonuniformly observable systems. Systems Control Lett. 29 (1996), 9–19 | DOI | MR | Zbl
[2] Ciccarella G., Mora M. Dalla, Germani A.: A Luenberger–like observer for nonlinear systems. Internat. J. Control 57 (1993), 3, 537–556 | DOI | MR
[3] Mora M. Dalla, Germani A., Manes C.: A state observer for nonlinear dynamical systems. Nonlinear Anal.: Theory, Methods Appl. 30 (1997), 7, 4485–4496 | DOI | MR
[4] Mora M. Dalla, Germani A., Manes C.: Exponential Observer for Smooth Nonlinear Systems. Internal Report R. 96-11 of Dept. of Electrical Eng., Univ. of L’Aquila, 1996. Submitted for publication
[5] Esfandiari F., Khalil H. K.: Output feedback stabilization of fully linearizable systems. Internat. J. Control 56 (1992), 5, 1007–1037 | DOI | MR | Zbl
[6] Gauthier J. P., Bornard G.: Observability for any $u(t)$ of a class of nonlinear systems. IEEE Trans. Automat. Control 26 (1981), 4, 922–926 | DOI | MR | Zbl
[7] Gauthier J. P., Hammouri H., Othman S.: A simple observer for nonlinear systems: application to bioreactors. IEEE Trans. Automat. Control 37 (1992), 875–880 | DOI | MR
[8] Gauthier J. P., Kupka I.: Observability and observers for nonlinear systems. SIAM J. Control Optim. 32 (1994), 4, 975–994 | DOI | MR | Zbl
[9] Isidori A.: Nonlinear Control Systems. Springer–Verlag, Berlin 1989 | MR | Zbl
[10] Khalil H. K., Esfandiari F.: Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans. Automat. Control 38 (1993), 9, 1412–1415 | DOI | MR | Zbl
[11] Krener A., Respondek W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985) 197–216 | DOI | MR | Zbl
[12] Raghavan S., Hedrick J. K.: Observer design for a class of nonlinear systems. Internat. J. Control 59 (1994), 2, 515–528 | DOI | MR | Zbl
[13] Teel A., Praly L.: Global stabilizability and observability imply semi–global stabilizability by output feedback. Systems Control Lett. 22 (1994), 313–325 | DOI | MR | Zbl
[14] Thau F. E.: Observing the state of nonlinear dynamical systems. Internat. J. Control 17 (1973), 471–479 | DOI
[15] Tornambè A.: High–gain observers for non–linear systems. Internat. J. Systems Sci. 23 (1992), 9, 1475–1489 | MR | Zbl
[16] Tsinias J.: Observer design for nonlinear systems. Systems Control Lett. 13 (1989), 135–142 | DOI | MR | Zbl
[17] Tsinias J.: Further results on the observer design problem. Systems Control Lett. 14 (1990), 411–418 | DOI | MR | Zbl