Two dimensional probabilities with a given conditional structure
Kybernetika, Tome 35 (1999) no. 3, pp. 367-381 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A properly measurable set ${\cal P} \subset {X} \times M_1({Y})$ (where ${X}, {Y}$ are Polish spaces and $M_1(Y)$ is the space of Borel probability measures on $Y$) is considered. Given a probability distribution $\lambda \in M_1(X)$ the paper treats the problem of the existence of ${X}\times {Y}$-valued random vector $(\xi ,\eta )$ for which ${\cal L}(\xi )=\lambda $ and ${\cal L}(\eta | \xi =x) \in {\cal P}_x$ $\lambda $-almost surely that possesses moreover some other properties such as “${\cal L}(\xi ,\eta )$ has the maximal possible support” or “${\cal L}(\eta | \xi =x)$’s are extremal measures in ${\cal P}_x$’s”. The paper continues the research started in [7].
A properly measurable set ${\cal P} \subset {X} \times M_1({Y})$ (where ${X}, {Y}$ are Polish spaces and $M_1(Y)$ is the space of Borel probability measures on $Y$) is considered. Given a probability distribution $\lambda \in M_1(X)$ the paper treats the problem of the existence of ${X}\times {Y}$-valued random vector $(\xi ,\eta )$ for which ${\cal L}(\xi )=\lambda $ and ${\cal L}(\eta | \xi =x) \in {\cal P}_x$ $\lambda $-almost surely that possesses moreover some other properties such as “${\cal L}(\xi ,\eta )$ has the maximal possible support” or “${\cal L}(\eta | \xi =x)$’s are extremal measures in ${\cal P}_x$’s”. The paper continues the research started in [7].
Classification : 28A35, 60A10, 60B05, 60E05
Keywords: two-dimensional probabilities; extremal measure
@article{KYB_1999_35_3_a5,
     author = {\v{S}t\v{e}p\'an, Josef and Hlubinka, Daniel},
     title = {Two dimensional probabilities with a given conditional structure},
     journal = {Kybernetika},
     pages = {367--381},
     year = {1999},
     volume = {35},
     number = {3},
     mrnumber = {1704672},
     zbl = {1274.60014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a5/}
}
TY  - JOUR
AU  - Štěpán, Josef
AU  - Hlubinka, Daniel
TI  - Two dimensional probabilities with a given conditional structure
JO  - Kybernetika
PY  - 1999
SP  - 367
EP  - 381
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a5/
LA  - en
ID  - KYB_1999_35_3_a5
ER  - 
%0 Journal Article
%A Štěpán, Josef
%A Hlubinka, Daniel
%T Two dimensional probabilities with a given conditional structure
%J Kybernetika
%D 1999
%P 367-381
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a5/
%G en
%F KYB_1999_35_3_a5
Štěpán, Josef; Hlubinka, Daniel. Two dimensional probabilities with a given conditional structure. Kybernetika, Tome 35 (1999) no. 3, pp. 367-381. http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a5/

[1] Aubin J.-P., Frankowska H.: Set Valued Analysis. Birkhäuser, Boston 1990 | MR | Zbl

[2] Beneš V., (eds.) J. Štěpán: Distributions with Given Marginals and Moment Problems. Kluwer, Dordrecht 1997 | MR | Zbl

[3] Cohn D. L.: Measure Theory. Birkhäuser, Boston 1980 | MR | Zbl

[4] Kempermann J. H. B.: The general moment problem, a geometric approach. Ann. Math. Statist. 39 (1968), 93–122 | DOI | MR

[5] Meyer P. A.: Probability and Potentials. Blaisdell, Waltham 1966 | MR | Zbl

[6] Schwarz L.: Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford University Press, Oxford 1973 | MR

[8] Winkler G.: Choquet Order and Simplices. (Lectures Notes in Mathematics 1145.) Springer–Verlag, Berlin 1985 | MR | Zbl