On the concept of the asymptotic Rényi distances for random fields
Kybernetika, Tome 35 (1999) no. 3, pp. 353-366 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The asymptotic Rényi distances are explicitly defined and rigorously studied for a convenient class of Gibbs random fields, which are introduced as a natural infinite-dimensional generalization of exponential distributions.
The asymptotic Rényi distances are explicitly defined and rigorously studied for a convenient class of Gibbs random fields, which are introduced as a natural infinite-dimensional generalization of exponential distributions.
Classification : 60G60, 60K35, 62B10, 62M40, 82B05
@article{KYB_1999_35_3_a4,
     author = {Jan\v{z}ura, Martin},
     title = {On the concept of the asymptotic {R\'enyi} distances for random fields},
     journal = {Kybernetika},
     pages = {353--366},
     year = {1999},
     volume = {35},
     number = {3},
     mrnumber = {1704671},
     zbl = {1274.62061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a4/}
}
TY  - JOUR
AU  - Janžura, Martin
TI  - On the concept of the asymptotic Rényi distances for random fields
JO  - Kybernetika
PY  - 1999
SP  - 353
EP  - 366
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a4/
LA  - en
ID  - KYB_1999_35_3_a4
ER  - 
%0 Journal Article
%A Janžura, Martin
%T On the concept of the asymptotic Rényi distances for random fields
%J Kybernetika
%D 1999
%P 353-366
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a4/
%G en
%F KYB_1999_35_3_a4
Janžura, Martin. On the concept of the asymptotic Rényi distances for random fields. Kybernetika, Tome 35 (1999) no. 3, pp. 353-366. http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a4/

[1] Csiszár I.: Information–type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hungar. 2 (1967), 299–318 | MR | Zbl

[2] Georgii H. O.: Gibbs Measures and Place Transitions. de Gruyter, Berlin 1988 | MR

[3] Liese F., Vajda I.: Convex Statistical Problems. Teubner, Leipzig 1987 | MR

[4] Perez A.: Risk estimates in terms of generalized $f$–entropies. In: Proc. Colloq. Inform. Theory (A. Rényi, ed.), Budapest 1968 | MR

[5] Rényi A.: On measure of entropy and information. In: Proc. 4th Berkeley Symp. Math. Statist. Probab., Univ. of Calif. Press, Berkeley 1961, Vol. 1, pp. 547–561 | MR

[6] Vajda I.: On the $f$–divergence and singularity of probability measures. Period. Math. Hungar. 2 (1972), 223–234 | DOI | MR | Zbl

[7] Vajda I.: The Theory of Statistical Inference and Information. Kluwer, Dordrecht – Boston – London 1989