@article{KYB_1999_35_3_a4,
author = {Jan\v{z}ura, Martin},
title = {On the concept of the asymptotic {R\'enyi} distances for random fields},
journal = {Kybernetika},
pages = {353--366},
year = {1999},
volume = {35},
number = {3},
mrnumber = {1704671},
zbl = {1274.62061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a4/}
}
Janžura, Martin. On the concept of the asymptotic Rényi distances for random fields. Kybernetika, Tome 35 (1999) no. 3, pp. 353-366. http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a4/
[1] Csiszár I.: Information–type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hungar. 2 (1967), 299–318 | MR | Zbl
[2] Georgii H. O.: Gibbs Measures and Place Transitions. de Gruyter, Berlin 1988 | MR
[3] Liese F., Vajda I.: Convex Statistical Problems. Teubner, Leipzig 1987 | MR
[4] Perez A.: Risk estimates in terms of generalized $f$–entropies. In: Proc. Colloq. Inform. Theory (A. Rényi, ed.), Budapest 1968 | MR
[5] Rényi A.: On measure of entropy and information. In: Proc. 4th Berkeley Symp. Math. Statist. Probab., Univ. of Calif. Press, Berkeley 1961, Vol. 1, pp. 547–561 | MR
[6] Vajda I.: On the $f$–divergence and singularity of probability measures. Period. Math. Hungar. 2 (1972), 223–234 | DOI | MR | Zbl
[7] Vajda I.: The Theory of Statistical Inference and Information. Kluwer, Dordrecht – Boston – London 1989