The Rényi distances of Gaussian measures
Kybernetika, Tome 35 (1999) no. 3, pp. 333-352 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The author in the paper evaluates the Rényi distances between two Gaussian measures using properties of nuclear operators and expresses the formula for the asymptotic rate of the Rényi distances of stationary Gaussian measures by the corresponding spectral density functions in a general case.
The author in the paper evaluates the Rényi distances between two Gaussian measures using properties of nuclear operators and expresses the formula for the asymptotic rate of the Rényi distances of stationary Gaussian measures by the corresponding spectral density functions in a general case.
Classification : 46N30, 60G10, 60G15, 60G30, 62B10
@article{KYB_1999_35_3_a3,
     author = {Mich\'alek, Ji\v{r}{\'\i}},
     title = {The {R\'enyi} distances of {Gaussian} measures},
     journal = {Kybernetika},
     pages = {333--352},
     year = {1999},
     volume = {35},
     number = {3},
     mrnumber = {1704670},
     zbl = {1274.62065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a3/}
}
TY  - JOUR
AU  - Michálek, Jiří
TI  - The Rényi distances of Gaussian measures
JO  - Kybernetika
PY  - 1999
SP  - 333
EP  - 352
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a3/
LA  - en
ID  - KYB_1999_35_3_a3
ER  - 
%0 Journal Article
%A Michálek, Jiří
%T The Rényi distances of Gaussian measures
%J Kybernetika
%D 1999
%P 333-352
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a3/
%G en
%F KYB_1999_35_3_a3
Michálek, Jiří. The Rényi distances of Gaussian measures. Kybernetika, Tome 35 (1999) no. 3, pp. 333-352. http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a3/

[1] Gohberg I., Krein M.: An Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space. Nauka, Moscow 1965. In Russian | MR

[2] Grenander V.: A contribution to the theory of Toeplitz matrices. Trans. Amer. Math. Soc. 79 (1955), 124–140 | DOI | MR | Zbl

[3] Grenander V., Szegő G.: Toeplitz Forms and their Application. Innostrannaja literatura, Moscow 1961. In Russian | MR

[4] Hájek J.: On linear statistical problems. Czechoslovak Math. J. 12 (87) (1962), 3, 404–444 | MR | Zbl

[5] Kac M.: Toeplitz matrices, translation kernels and related problems in probability theory. Duke Math. J. 21 (1954), 501–509 | MR

[6] Kadota T.: Simultaneous diagonalization of two covariance kernels and application to second order stochastic process. SIAM J. Appl. Math. 15 (1967), 1470–1480 | DOI | MR

[7] Kullback S., Keegel J. C., Kullback J. H.: Topics in Statistical Information Theory (Lecture Notes in Statistics 42). Springer–Verlag, Berlin 1987 | MR

[8] Michálek J.: Asymptotic Rényi’s rate of Gaussian processes. Problem Control Inform. Theory 18 (1990), 8, 209–227 | Zbl

[9] Michálek J., Rüschendorf L.: Karhunen class processes forming a basis. In: Trans. 12th Prague Conference on Inform. Theory, Statist. Decis. Functions, Random Process., Prague 1992, Academy of Sciences of the Czech Republic, pp. 158–160

[10] Pinsker M. S.: Information and Information Stability of Random Variables and Processes. Izv. AN SSSR, Moscow 1960. In Russian | MR

[11] Pisarenko B.: On the problem of detection of random signal in noise. Radiotekhn. i Elektron. 6 (1961), 4, 514–528 In Russian | MR

[12] Pitcher T.: An integral expression for the log likelihood ratio of two Gaussian processes. SIAM J. Appl. Math. 14 (1966), 228–233 | DOI | MR | Zbl

[13] Rozanov J.: Infinite–Dimensional Gaussian Probability Distributions. Nauka, Moscow 1968. In Russian

[14] Vajda I.: Theory of Statistical Inference and Information. Kluwer, Dordrecht 1989 | Zbl