Keywords: generating functions of likelihood ratio; exponential family
@article{KYB_1999_35_3_a2,
author = {Liese, Friedrich and Miescke, Klaus J.},
title = {Exponential rates for the error probabilities in selection procedures},
journal = {Kybernetika},
pages = {309--332},
year = {1999},
volume = {35},
number = {3},
mrnumber = {1704669},
zbl = {1274.62158},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a2/}
}
Liese, Friedrich; Miescke, Klaus J. Exponential rates for the error probabilities in selection procedures. Kybernetika, Tome 35 (1999) no. 3, pp. 309-332. http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a2/
[2] Bucklew I. A.: Large Deviation Techniques in Decision, Simulation and Estimatio.
[3] Chernoff H.: A measure of asymptotic efficiency for tests of hypothesis based on the sum of observation.
[4] Chernoff H.: Large sample theory: Parametric cas.
[6] Krafft O., Plachky D.: Bounds for the power of likelihood ratio tests and their asymptotic and their asymptotic propertie.
[7] Krafft O., Puri M. L.: The asymptotic behaviour of the minimax risk for multiple decision problem.
[8] Liese F., Miescke K. L.: Exponential Rates for the Error Probabilities in Selection Procedures. Preprint 96/5, FB Mathematik, Universität Rostock, Rostock 1996 | MR
[9] Liese F., Vajda I.: Convex Statistical Distance.
[10] Rüschendorf L.: Asymptotische Statisti.
[11] Rukhin A. L.: Adaptive procedure for a finite numbers of probability distributions. Statist. Decis. Theory Related Topics III. 2 (1982), 269–285 | MR
[12] Rukhin A. L.: Adaptive classification procedure.
[13] Rukhin A. L.: Adaptive testing of multiple hypotheses for stochastic processe.
[14] Rukhin A. L., Vajda I.: Adaptive decision making for stochastic processe.
[15] Vajda I.: Theory of Statistical Inference and Informatio.