Inference about stationary distributions of Markov chains based on divergences with observed frequencies
Kybernetika, Tome 35 (1999) no. 3, pp. 265-280 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For data generated by stationary Markov chains there are considered estimates of chain parameters minimizing $\phi $–divergences between theoretical and empirical distributions of states. Consistency and asymptotic normality are established and the asymptotic covariance matrices are evaluated. Testing of hypotheses about the stationary distributions based on $\phi $–divergences between the estimated and empirical distributions is considered as well. Asymptotic distributions of $\phi $–divergence test statistics are found, enabling to specify asymptotically $\alpha $-level tests.
For data generated by stationary Markov chains there are considered estimates of chain parameters minimizing $\phi $–divergences between theoretical and empirical distributions of states. Consistency and asymptotic normality are established and the asymptotic covariance matrices are evaluated. Testing of hypotheses about the stationary distributions based on $\phi $–divergences between the estimated and empirical distributions is considered as well. Asymptotic distributions of $\phi $–divergence test statistics are found, enabling to specify asymptotically $\alpha $-level tests.
Classification : 62E20, 62M02, 62M05
Keywords: $\phi$-divergence; empirical distributions; parameter estimation; hypotheses testing
@article{KYB_1999_35_3_a0,
     author = {Men\'endez, Mar{\'\i}a Luisa and Morales, Domingo and Pardo, Leandro and Vajda, Igor},
     title = {Inference about stationary distributions of {Markov} chains based on divergences with observed frequencies},
     journal = {Kybernetika},
     pages = {265--280},
     year = {1999},
     volume = {35},
     number = {3},
     mrnumber = {1704667},
     zbl = {1274.62548},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a0/}
}
TY  - JOUR
AU  - Menéndez, María Luisa
AU  - Morales, Domingo
AU  - Pardo, Leandro
AU  - Vajda, Igor
TI  - Inference about stationary distributions of Markov chains based on divergences with observed frequencies
JO  - Kybernetika
PY  - 1999
SP  - 265
EP  - 280
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a0/
LA  - en
ID  - KYB_1999_35_3_a0
ER  - 
%0 Journal Article
%A Menéndez, María Luisa
%A Morales, Domingo
%A Pardo, Leandro
%A Vajda, Igor
%T Inference about stationary distributions of Markov chains based on divergences with observed frequencies
%J Kybernetika
%D 1999
%P 265-280
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a0/
%G en
%F KYB_1999_35_3_a0
Menéndez, María Luisa; Morales, Domingo; Pardo, Leandro; Vajda, Igor. Inference about stationary distributions of Markov chains based on divergences with observed frequencies. Kybernetika, Tome 35 (1999) no. 3, pp. 265-280. http://geodesic.mathdoc.fr/item/KYB_1999_35_3_a0/

[1] Billingsley P.: Statistical methods in Markov chains. Ann. Math. Statist. 32 (1961), 12–40 | DOI | MR | Zbl

[2] Birch M. W.: A new proof of the Pearson–Fisher Theorem. Ann. Math. Statist. 35 (1964), 817–824 | DOI | MR | Zbl

[3] Bishop Y. M. M., Fienberg S. E., Holland P. W.: Discrete Multivariate Analysis. Theory and Practice. The MIT Press, Cambridge, Massachusetts 1975 | MR | Zbl

[4] Cressie N., Read T. R. C.: Multinomial goodness of fit tests. J. Royal Statist. Soc., Ser. B 46 (1984), 440–464 | MR | Zbl

[5] Drost F. C., Kallenberg W. C. M., Moore D. S., Oosterhoff J.: Power approximations to multinomial tests of fit. J. Amer. Statist. Assoc. 84 (1989), 130–141 | DOI | MR | Zbl

[6] Glesser L. J., Moore D. S.: The effect of dependence on chi–squared and empiric distribution tests of fit. Ann. Statist. 11 (1983), 1100-1108 | MR

[7] Glesser L. J., Moore D. S.: The effect of positive dependence on chi–squared tests for categorical data. J. Royal Statis. Soc., Ser. B 47 (1983), 459–465 | MR

[8] Liese F., Vajda I.: Convex Statistical Distances. Teubner, Leipzig 1987 | MR | Zbl

[9] Menéndez M. L., Morales D., Pardo L., Vajda I.: Divergence–based estimation and testing of statistical models of classification. J. Multivariate Anal. 54 (1996), 329–354 | DOI | MR

[10] Menéndez M. L., Morales D., Pardo L., Vajda I.: Testing in stationary models based on $f$–divergences of observed and theoretical frequencies. Kybernetika 33 (1997), 465–475 | MR

[11] Moore D. S.: The effect of dependence on chi–squared tests of fit. Ann. Statist. 10 (1982), 1163–1171 | DOI | MR | Zbl

[12] Morales D., Pardo L., Vajda I.: Asymptotic divergence of estimates of discrete distributions. J. Statist. Plann. Inference 48 (1995), 347–369 | DOI | MR | Zbl

[13] Read T. R. C., Cressie N. A. C.: Goodness–of–Fit Statistics for Discrete Multivariate Data. Springer, Berlin 1988 | MR | Zbl

[14] Salicrú M., Morales D., Menéndez M. L., Pardo L.: On the applications of divergence type measures in testing statistical hypotheses. J. Multivariate Anal. 51 (1994), 372–391 | DOI | Zbl

[15] Tavaré S., Altham P. M. E.: Serial dependence of observations leading to contingency tables, and corrections to chi–squared statistics. Biometrika 70 (1983), 139–144 | DOI | MR | Zbl