Fuzzy $\beta$-open sets and fuzzy $\beta$-separation axioms
Kybernetika, Tome 35 (1999) no. 2, pp. 215-223 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper fuzzy separation axioms have been introduced and investigated with the help of fuzzy $\beta $-open sets.
In this paper fuzzy separation axioms have been introduced and investigated with the help of fuzzy $\beta $-open sets.
Classification : 54A40
Keywords: fuzzy point; fuzzy set; fuzzy separation axioms
@article{KYB_1999_35_2_a5,
     author = {Balasubramanian, Ganesan},
     title = {Fuzzy $\beta$-open sets and fuzzy $\beta$-separation axioms},
     journal = {Kybernetika},
     pages = {215--223},
     year = {1999},
     volume = {35},
     number = {2},
     mrnumber = {1690947},
     zbl = {1274.54023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a5/}
}
TY  - JOUR
AU  - Balasubramanian, Ganesan
TI  - Fuzzy $\beta$-open sets and fuzzy $\beta$-separation axioms
JO  - Kybernetika
PY  - 1999
SP  - 215
EP  - 223
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a5/
LA  - en
ID  - KYB_1999_35_2_a5
ER  - 
%0 Journal Article
%A Balasubramanian, Ganesan
%T Fuzzy $\beta$-open sets and fuzzy $\beta$-separation axioms
%J Kybernetika
%D 1999
%P 215-223
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a5/
%G en
%F KYB_1999_35_2_a5
Balasubramanian, Ganesan. Fuzzy $\beta$-open sets and fuzzy $\beta$-separation axioms. Kybernetika, Tome 35 (1999) no. 2, pp. 215-223. http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a5/

[1] Monseb, Abd. El., El-Deeb S. N., Mahmould R. A.: $\beta $-open sets and $\beta $-continuous mapping. Bull. Fac. Sci. Assiut Univ. (1982)

[2] Allam A. A., Hakkim, Abd. El.: On $\beta $-compact spaces. Bull. Calcuta Math. Soc. 81 (1989), 179–182 | MR

[3] Balasubramanian G.: On fuzzy $\beta $-compact spaces and fuzzy $\beta $-extremally disconnected spaces. Kybernetika 33 (1997), 271–277 | MR | Zbl

[4] Shahna A. S. Bin: On fuzzy strong semi continuity and fuzzy precontinuity. Fuzzy Sets and Systems 44 (1991), 303–308 | DOI | MR

[5] Chandrika G. K.: Fuzzy Topological Spaces. Ph.D. Thesis, Bharathiar University, 1993

[6] Chang C. L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182–190 | DOI | MR | Zbl

[7] Lowen R.: Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl. 56 (1976), 621–633 | DOI | MR | Zbl

[8] Sugeno M.: An introductory survey of fuzzy control. Inform. Sci. 36 (1985), 59–83 | DOI | MR | Zbl

[9] Smets P.: The degree of belief in a fuzzy event. Inform. Sci. 25 (1981), 1–19 | DOI | MR | Zbl

[10] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353 | DOI | MR | Zbl