Proto-metrizable fuzzy topological spaces
Kybernetika, Tome 35 (1999) no. 2, pp. 209-213 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we define for fuzzy topological spaces a notion corresponding to proto-metrizable topological spaces. We obtain some properties of these fuzzy topological spaces, particularly we give relations with non-archimedean, and metrizable fuzzy topological spaces.
In this paper we define for fuzzy topological spaces a notion corresponding to proto-metrizable topological spaces. We obtain some properties of these fuzzy topological spaces, particularly we give relations with non-archimedean, and metrizable fuzzy topological spaces.
Classification : 03E72, 54A40, 54E35
Keywords: fuzzy topological space; proto-metrizable topological space
@article{KYB_1999_35_2_a4,
     author = {Lupia\~nez, Francisco Gallego},
     title = {Proto-metrizable fuzzy topological spaces},
     journal = {Kybernetika},
     pages = {209--213},
     year = {1999},
     volume = {35},
     number = {2},
     mrnumber = {1690946},
     zbl = {1274.54036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a4/}
}
TY  - JOUR
AU  - Lupiañez, Francisco Gallego
TI  - Proto-metrizable fuzzy topological spaces
JO  - Kybernetika
PY  - 1999
SP  - 209
EP  - 213
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a4/
LA  - en
ID  - KYB_1999_35_2_a4
ER  - 
%0 Journal Article
%A Lupiañez, Francisco Gallego
%T Proto-metrizable fuzzy topological spaces
%J Kybernetika
%D 1999
%P 209-213
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a4/
%G en
%F KYB_1999_35_2_a4
Lupiañez, Francisco Gallego. Proto-metrizable fuzzy topological spaces. Kybernetika, Tome 35 (1999) no. 2, pp. 209-213. http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a4/

[1] Ajmal N., Kohli J. K.: Connectedness in fuzzy topological spaces. Fuzzy Sets and Systems 31 (1989), 369–388 | DOI | MR | Zbl

[2] Bülbül A., Warner M. W.: On the goodness of some types of fuzzy paracompactness. Fuzzy Sets and Systems 55 (1993), 187–191 | DOI | MR | Zbl

[3] Eklund P., Gähler W.: Basic notions for fuzzy topology I. Fuzzy Sets and Systems 26 (1988), 333–356 | MR | Zbl

[4] El–Monsef M. E. A., Zeyada F. M., El–Deeb S. N., Hanafy I. M.: Good extensions of paracompactness. Math. Japon. 37 (1992), 195–200 | MR | Zbl

[5] Fuller L. B.: Trees and proto–metrizable spaces. Pacific J. Math. 104 (1983), 55–75 | DOI | MR | Zbl

[6] Gruenhage G., Zenor P.: Proto metrizable spaces. Houston J. Math. 3 (1977), 47–53 | MR | Zbl

[7] Lowen R.: A comparison of different compactness notions in fuzzy topological spaces. J. Math. Anal. Appl. 64 (1978), 446–454 | DOI | MR | Zbl

[8] Luo M.-K.: Paracompactness in fuzzy topological spaces. J. Math. Anal. Appl. 130 (1988), 55–77 | DOI | MR | Zbl

[9] Lupiáñez F. G.: Non–archimedean fuzzy topological spaces. J. Fuzzy Math. 4 (1996), 559–565 | MR | Zbl

[10] Martin H. W.: Weakly induced fuzzy topological spaces. J. Math. Anal. Appl. 78 (1980), 634–639 | DOI | MR | Zbl

[11] Nyikos P.: Some surprising base properties in Topology, Studies in topology. In: Proc. Conf. Univ. North Carolina, Charlotte, NC 1974, Academic Press, New York 1975, pp. 427–450 | MR

[12] Nyikos P.: Some surprising base properties in Topology II. In: Set–theoretic Topology, Inst. Medicine and Mathematics, Ohio Univ., Academic Press, New York 1977, pp. 277–305 | MR | Zbl