Keywords: mathematical programs; optimality condition; equilibrium constraints
@article{KYB_1999_35_2_a2,
author = {Outrata, Ji\v{r}{\'\i} V.},
title = {Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case},
journal = {Kybernetika},
pages = {177--193},
year = {1999},
volume = {35},
number = {2},
mrnumber = {1690944},
zbl = {1274.90484},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a2/}
}
Outrata, Jiří V. Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case. Kybernetika, Tome 35 (1999) no. 2, pp. 177-193. http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a2/
[1] Anandalingam G., (eds.) T. Friesz: Hierarchical optimization. Ann. Oper. Res. 34 (1992) | MR | Zbl
[2] Aubin J.-P., Frankowska H.: Set–Valued Analysis. Birkhäuser, Boston 1990 | MR | Zbl
[3] Clarke F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983 | MR | Zbl
[4] Dempe S.: A necessary and sufficient optimality condition for bilevel programming problems. Optimization 25 (1992), 341–354 | DOI | MR
[5] Kočvara M., Outrata J. V.: On the solution of optimum design problems with variational inequalities. In: Recent Advances in Nonsmooth Optimization (D. Du, L. Qi and R. Womersley, eds.), World Scientific, Singapore 1995, pp. 172–192 | MR | Zbl
[6] Kočvara M., Outrata J. V.: A nonsmooth approach to optimization problems with equilibrium constraints. In: Proc. of the ICCP (M. Ferris and J.-S. Pang, eds.), SIAM 1997, pp. 148–164 | MR | Zbl
[7] Luo Z.-Q., Pang J.-S., Ralph D., Wu S.-Q.: Exact penalization and stationary conditions of mathematical programs with equilibrium constraints. Math. Programming 75 (1996), 19–76 | MR
[8] Luo Z.-Q., Pang J.-S., Ralph D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge 1996 | MR | Zbl
[9] B. S. : Approximation Methods in Problems of Optimization and Control. Nauka, Moscow 1988. (In Russian; English translation to appear in Wiley–Interscience) | MR | Zbl
[10] B. S. : Sensitivity analysis in nonsmooth optimization. In: Theoretical Aspects of Industrial Design (D. A. Field, and V. Komkov, eds.), SIAM Publications, Philadelphia 1992, pp. 32–46 | MR | Zbl
[11] B. S. : Generalized differential calculus for nonsmooth and set–valued mappings. J. Math. Anal. Appl. 183 (1994), 250–288 | DOI | MR | Zbl
[12] B. S. : Lipschitzian stability of constraint systems and generalized equations. Nonlinear Analysis, Theory, Methods & Applications 22 (1994), 173–206 | DOI | MR | Zbl
[13] Murty K. G.: Linear Programming. Wiley, New York 1983 | MR | Zbl
[14] Murty K. G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin 1988 | MR | Zbl
[15] Outrata J. V.: On optimization problems with variational inequality constraints. SIAM J. Optimization 4 (1994), 340–357 | DOI | MR | Zbl
[16] Outrata J. V.: Optimality conditions for a class of mathematical programs with equilibrium constraints, to appea.
[17] Pang J.-S., Ralph D.: Piecewise smoothness, local invertibility, and parametric analysis of normal maps. Math. Oper. Res. 21 (1996), 401–426 | DOI | MR | Zbl
[18] Robinson S. M.: Strongly regular generalized equations. Math. Oper. Res. 5 (1980), 43–62 | DOI | MR | Zbl
[19] Scholtes S.: Introduction to Piecewise Differentiable Equations. Habil. Thesis, University of Karlsruhe, 1994
[20] Treiman J. S.: General optimality conditions for bi-level optimization problems. Preprint
[21] Ye J. J., Zhu D. L.: Optimality conditions for bilevel programming problems. Optimization 33 (1995), 9–27 | DOI | MR | Zbl
[22] Ye J. J., Zhu D. L., Zhu Q. J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optimization 7 (1997), 481–507 | DOI | MR | Zbl
[23] Ye J. J., Ye X. Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22 (1997), 977–997 | DOI | MR | Zbl
[24] Zhang R.: Problems of hierarchical optimization in finite dimensions. SIAM J. Optimization 4 (1994), 521–536 | DOI | MR | Zbl