Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case
Kybernetika, Tome 35 (1999) no. 2, pp. 177-193 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper deals with mathematical programs, where parameter-dependent nonlinear complementarity problems arise as side constraints. Using the generalized differential calculus for nonsmooth and set-valued mappings due to B. Mordukhovich, we compute the so-called coderivative of the map assigning the parameter the (set of) solutions to the respective complementarity problem. This enables, in particular, to derive useful 1st-order necessary optimality conditions, provided the complementarity problem is strongly regular at the solution.
The paper deals with mathematical programs, where parameter-dependent nonlinear complementarity problems arise as side constraints. Using the generalized differential calculus for nonsmooth and set-valued mappings due to B. Mordukhovich, we compute the so-called coderivative of the map assigning the parameter the (set of) solutions to the respective complementarity problem. This enables, in particular, to derive useful 1st-order necessary optimality conditions, provided the complementarity problem is strongly regular at the solution.
Classification : 49J52, 90C30, 90C46, 91A65
Keywords: mathematical programs; optimality condition; equilibrium constraints
@article{KYB_1999_35_2_a2,
     author = {Outrata, Ji\v{r}{\'\i} V.},
     title = {Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case},
     journal = {Kybernetika},
     pages = {177--193},
     year = {1999},
     volume = {35},
     number = {2},
     mrnumber = {1690944},
     zbl = {1274.90484},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a2/}
}
TY  - JOUR
AU  - Outrata, Jiří V.
TI  - Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case
JO  - Kybernetika
PY  - 1999
SP  - 177
EP  - 193
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a2/
LA  - en
ID  - KYB_1999_35_2_a2
ER  - 
%0 Journal Article
%A Outrata, Jiří V.
%T Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case
%J Kybernetika
%D 1999
%P 177-193
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a2/
%G en
%F KYB_1999_35_2_a2
Outrata, Jiří V. Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case. Kybernetika, Tome 35 (1999) no. 2, pp. 177-193. http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a2/

[1] Anandalingam G., (eds.) T. Friesz: Hierarchical optimization. Ann. Oper. Res. 34 (1992) | MR | Zbl

[2] Aubin J.-P., Frankowska H.: Set–Valued Analysis. Birkhäuser, Boston 1990 | MR | Zbl

[3] Clarke F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983 | MR | Zbl

[4] Dempe S.: A necessary and sufficient optimality condition for bilevel programming problems. Optimization 25 (1992), 341–354 | DOI | MR

[5] Kočvara M., Outrata J. V.: On the solution of optimum design problems with variational inequalities. In: Recent Advances in Nonsmooth Optimization (D. Du, L. Qi and R. Womersley, eds.), World Scientific, Singapore 1995, pp. 172–192 | MR | Zbl

[6] Kočvara M., Outrata J. V.: A nonsmooth approach to optimization problems with equilibrium constraints. In: Proc. of the ICCP (M. Ferris and J.-S. Pang, eds.), SIAM 1997, pp. 148–164 | MR | Zbl

[7] Luo Z.-Q., Pang J.-S., Ralph D., Wu S.-Q.: Exact penalization and stationary conditions of mathematical programs with equilibrium constraints. Math. Programming 75 (1996), 19–76 | MR

[8] Luo Z.-Q., Pang J.-S., Ralph D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge 1996 | MR | Zbl

[9] B. S. : Approximation Methods in Problems of Optimization and Control. Nauka, Moscow 1988. (In Russian; English translation to appear in Wiley–Interscience) | MR | Zbl

[10] B. S. : Sensitivity analysis in nonsmooth optimization. In: Theoretical Aspects of Industrial Design (D. A. Field, and V. Komkov, eds.), SIAM Publications, Philadelphia 1992, pp. 32–46 | MR | Zbl

[11] B. S. : Generalized differential calculus for nonsmooth and set–valued mappings. J. Math. Anal. Appl. 183 (1994), 250–288 | DOI | MR | Zbl

[12] B. S. : Lipschitzian stability of constraint systems and generalized equations. Nonlinear Analysis, Theory, Methods & Applications 22 (1994), 173–206 | DOI | MR | Zbl

[13] Murty K. G.: Linear Programming. Wiley, New York 1983 | MR | Zbl

[14] Murty K. G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin 1988 | MR | Zbl

[15] Outrata J. V.: On optimization problems with variational inequality constraints. SIAM J. Optimization 4 (1994), 340–357 | DOI | MR | Zbl

[16] Outrata J. V.: Optimality conditions for a class of mathematical programs with equilibrium constraints, to appea.

[17] Pang J.-S., Ralph D.: Piecewise smoothness, local invertibility, and parametric analysis of normal maps. Math. Oper. Res. 21 (1996), 401–426 | DOI | MR | Zbl

[18] Robinson S. M.: Strongly regular generalized equations. Math. Oper. Res. 5 (1980), 43–62 | DOI | MR | Zbl

[19] Scholtes S.: Introduction to Piecewise Differentiable Equations. Habil. Thesis, University of Karlsruhe, 1994

[20] Treiman J. S.: General optimality conditions for bi-level optimization problems. Preprint

[21] Ye J. J., Zhu D. L.: Optimality conditions for bilevel programming problems. Optimization 33 (1995), 9–27 | DOI | MR | Zbl

[22] Ye J. J., Zhu D. L., Zhu Q. J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optimization 7 (1997), 481–507 | DOI | MR | Zbl

[23] Ye J. J., Ye X. Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22 (1997), 977–997 | DOI | MR | Zbl

[24] Zhang R.: Problems of hierarchical optimization in finite dimensions. SIAM J. Optimization 4 (1994), 521–536 | DOI | MR | Zbl