On the Rao-Blackwell Theorem for fuzzy random variables
Kybernetika, Tome 35 (1999) no. 2, pp. 167-175 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In a previous paper, conditions have been given to compute iterated expectations of fuzzy random variables, irrespectively of the order of integration. In another previous paper, a generalized real-valued measure to quantify the absolute variation of a fuzzy random variable with respect to its expected value have been introduced and analyzed. In the present paper we combine the conditions and generalized measure above to state an extension of the basic Rao–Blackwell Theorem. An application of this extension is carried out to construct a proper unbiased estimator of the expected value of a fuzzy random variable in the random sampling with replacement from a finite population.
In a previous paper, conditions have been given to compute iterated expectations of fuzzy random variables, irrespectively of the order of integration. In another previous paper, a generalized real-valued measure to quantify the absolute variation of a fuzzy random variable with respect to its expected value have been introduced and analyzed. In the present paper we combine the conditions and generalized measure above to state an extension of the basic Rao–Blackwell Theorem. An application of this extension is carried out to construct a proper unbiased estimator of the expected value of a fuzzy random variable in the random sampling with replacement from a finite population.
Classification : 62B99, 62D05, 62F10, 62F86
Keywords: Rao-Blackwell theorem; unbiased estimator
@article{KYB_1999_35_2_a1,
     author = {Lubiano, Mar{\'\i}a Asunci\'on and Gil, Mar{\'\i}a Angeles and L\'opez-D{\'\i}az, Miguel},
     title = {On the {Rao-Blackwell} {Theorem} for fuzzy random variables},
     journal = {Kybernetika},
     pages = {167--175},
     year = {1999},
     volume = {35},
     number = {2},
     mrnumber = {1690943},
     zbl = {1274.62226},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a1/}
}
TY  - JOUR
AU  - Lubiano, María Asunción
AU  - Gil, María Angeles
AU  - López-Díaz, Miguel
TI  - On the Rao-Blackwell Theorem for fuzzy random variables
JO  - Kybernetika
PY  - 1999
SP  - 167
EP  - 175
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a1/
LA  - en
ID  - KYB_1999_35_2_a1
ER  - 
%0 Journal Article
%A Lubiano, María Asunción
%A Gil, María Angeles
%A López-Díaz, Miguel
%T On the Rao-Blackwell Theorem for fuzzy random variables
%J Kybernetika
%D 1999
%P 167-175
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a1/
%G en
%F KYB_1999_35_2_a1
Lubiano, María Asunción; Gil, María Angeles; López-Díaz, Miguel. On the Rao-Blackwell Theorem for fuzzy random variables. Kybernetika, Tome 35 (1999) no. 2, pp. 167-175. http://geodesic.mathdoc.fr/item/KYB_1999_35_2_a1/

[1] Aumann R. J.: Integrals of set–valued functions. J. Math. Anal. Appl. 12 (1965), 1–12 | DOI | MR | Zbl

[2] Bertoluzza C., Corral N., Salas A.: On a new class of distances between fuzzy numbers. Mathware $\&$ Soft Computing 2 (1995), 71–84 | MR | Zbl

[3] Breiman L.: Probability. Addison–Wesley, Reading, MA 1968 | MR | Zbl

[4] Casella G., Berger R. L.: Statistical Inference. Wadsworth & Brooks/Cole, Pacific Grove 1990 | MR | Zbl

[5] Raj D., Khamis S. H.: Some remarks on sampling with replacement. Ann. Math. Statist. 29 (1958), 550–557 | DOI | MR | Zbl

[6] Dudewicz E. J., Mishra S. N.: Modern Mathematical Statistics. Wiley, New York 1988 | MR | Zbl

[7] López–Díaz M., Gil M. A.: Reversing the order of integration in iterated expectations of fuzzy random variables, and statistical applications. J. Statist. Plann. Inference 74 (1998), 11–29 | DOI | MR | Zbl

[8] Lubiano M. A.: Medidas de variación de elementos aleatorios imprecisos. Ph.D. Thesis. Universidad de Oviedo 1999

[9] Lubiano M. A., Gil M. A.: Estimating the expected value of fuzzy random variables in random samplings from finite populations. Statist. Papers, to appear | MR | Zbl

[10] Lubiano M. A., Gil M. A., López–Díaz M., López M. T.: The $\vec{\lambda }$-mean squared dispersion associated with a fuzzy random variable. Fuzzy Sets and Systems, to appear

[11] Lubiano M. A., Körner R.: A Generalized Measure of Dispersion for Fuzzy Random Variables. Technical Report, Universidad de Oviedo 1998

[12] Puri M. L., Ralescu D. A.: Fuzzy random variables. J. Math. Anal. Appl. 114 (1986), 409–422 | DOI | MR | Zbl

[13] Thompson S. K.: Sampling. Wiley, New York 1992 | MR