An application of the expectation-maximization algorithm to interference rejection for direct-sequence spread-spectrum signals
Kybernetika, Tome 35 (1999) no. 1, pp. 83-91 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a direct-sequence spread-spectrum (DS-SS) system we pose and solve the problem of maximum-likelihood (ML) sequence estimation in the presence of narrowband interference, using the expectation-maximization (EM) algorithm. It is seen that the iterative EM algorithm obtains at each iteration an estimate of the interference which is then subtracted from the data before a new sequence estimate is produced. Both uncoded and trellis coded systems are studied, and the EM-based algorithm is seen to perform well, outperforming a receiver that uses an optimized notch filter to remove the intereference, especially for large interference levels.
For a direct-sequence spread-spectrum (DS-SS) system we pose and solve the problem of maximum-likelihood (ML) sequence estimation in the presence of narrowband interference, using the expectation-maximization (EM) algorithm. It is seen that the iterative EM algorithm obtains at each iteration an estimate of the interference which is then subtracted from the data before a new sequence estimate is produced. Both uncoded and trellis coded systems are studied, and the EM-based algorithm is seen to perform well, outperforming a receiver that uses an optimized notch filter to remove the intereference, especially for large interference levels.
Classification : 93E10, 94A12
Keywords: maximum likelihood (ML) estimation; spread-spectrum signal; sequence estimation; narrowband interference; expectation-maximization (EM) algorithm; notch filter
@article{KYB_1999_35_1_a7,
     author = {Zhang, Quan G. and Georghiades, Costas N.},
     title = {An application of the expectation-maximization algorithm to interference rejection for direct-sequence spread-spectrum signals},
     journal = {Kybernetika},
     pages = {83--91},
     year = {1999},
     volume = {35},
     number = {1},
     mrnumber = {1705532},
     zbl = {1274.93260},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a7/}
}
TY  - JOUR
AU  - Zhang, Quan G.
AU  - Georghiades, Costas N.
TI  - An application of the expectation-maximization algorithm to interference rejection for direct-sequence spread-spectrum signals
JO  - Kybernetika
PY  - 1999
SP  - 83
EP  - 91
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a7/
LA  - en
ID  - KYB_1999_35_1_a7
ER  - 
%0 Journal Article
%A Zhang, Quan G.
%A Georghiades, Costas N.
%T An application of the expectation-maximization algorithm to interference rejection for direct-sequence spread-spectrum signals
%J Kybernetika
%D 1999
%P 83-91
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a7/
%G en
%F KYB_1999_35_1_a7
Zhang, Quan G.; Georghiades, Costas N. An application of the expectation-maximization algorithm to interference rejection for direct-sequence spread-spectrum signals. Kybernetika, Tome 35 (1999) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a7/

[1] Ansari A., Viswanathan R.: Application of expectation–maximization algorithm to the detection of a direct–sequence signal in pulsed noise jamming. IEEE Trans. Comm. 41 (1993), 1151–1154 | DOI | Zbl

[2] Dempster A. P., Laird N. M., Rubin D. B.: Maximum–likelihood from incomplete data via EM algorithm. J. Roy. Statist. Soc. 39 (1977), 1–17 | MR

[3] Georghiades C. N., Han J. C.: Optimum decoding of TCM in the presence of phase–errors. In: Proc. 1990 International Symposium and Its Applications (ISITA’90), Hawaii 1990

[4] Georghiades C. N., Han J. C.: Sequence estimation in the presence of random parameters via the EM algorithm, submitte.

[5] Georghiades C. N., Snyder D. L.: The expectation–maximization algorithm for symbol unsynchronized sequence detection. In: IEEE Trans. Comm. COM-39 (1991), 54–61 | DOI

[6] Han J. C., Georghiades C. N.: Maximum–likelihood sequence estimation for fading channels via the EM algorithm. In: Proc. Communication Theory Mini Conference, Houston 1993

[7] Kaleh G. K.: Joint decoding and phase estimation via the expectation–maximization algorithm. In: Proc. Internat. Symposium on Information Theory, San Diego 1990

[8] Milstein L. B., Iltis R. A.: Signal processing for interference rejection in spread spectrum communications. IEEE ASSP Magazine (1986), 18–31 | DOI

[9] Modestino J. W.: Reduced–complexity iterative maximum–likelihood sequence estimation on channels with memory. In: Proc. Internat. Symposium on Information Theory, San Antonio 1993

[10] Wu C. F.: On the convergence properties of the EM algorithm. Ann. Statist. 11 (1983), 1, 95–103 | DOI | MR | Zbl