$H_\infty$ control design for an adaptive optics system
Kybernetika, Tome 35 (1999) no. 1, pp. 69-81 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we first present a full order $H_\infty $ controller for a multi- input, multi-output (MIMO) adaptive optics system. We apply model reduction techniques to the full order $H_\infty $ controller and demonstrate that the closed-loop (CL) system with the reduced order $H_\infty $ controller achieves the same high level of performance. Upon closer examination of the structure of the reduced order $H_\infty $ controller it is found that the dynamical behavior of the reduced order $H_\infty $ controller can be accurately approximated by a single-input, single-output (SISO) transfer function (TF) multiplied by the inverse of the adaptive optics plant dc gain. This observation then leads to a general design methodology which only requires the synthesis of a SISO $H_\infty $ controller and multiplication by constant matrices.
In this paper we first present a full order $H_\infty $ controller for a multi- input, multi-output (MIMO) adaptive optics system. We apply model reduction techniques to the full order $H_\infty $ controller and demonstrate that the closed-loop (CL) system with the reduced order $H_\infty $ controller achieves the same high level of performance. Upon closer examination of the structure of the reduced order $H_\infty $ controller it is found that the dynamical behavior of the reduced order $H_\infty $ controller can be accurately approximated by a single-input, single-output (SISO) transfer function (TF) multiplied by the inverse of the adaptive optics plant dc gain. This observation then leads to a general design methodology which only requires the synthesis of a SISO $H_\infty $ controller and multiplication by constant matrices.
Classification : 93B11, 93B15, 93B36, 93C95
Keywords: multi-input; multi-output; adaptive optics system; model reduction techniques; $H_\infty$ control
@article{KYB_1999_35_1_a6,
     author = {Denis, Nikolaos and Looze, Douglas and Huang, Jim and Casta\~non, David},
     title = {$H_\infty$ control design for an adaptive optics system},
     journal = {Kybernetika},
     pages = {69--81},
     year = {1999},
     volume = {35},
     number = {1},
     mrnumber = {1705531},
     zbl = {1274.93060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a6/}
}
TY  - JOUR
AU  - Denis, Nikolaos
AU  - Looze, Douglas
AU  - Huang, Jim
AU  - Castañon, David
TI  - $H_\infty$ control design for an adaptive optics system
JO  - Kybernetika
PY  - 1999
SP  - 69
EP  - 81
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a6/
LA  - en
ID  - KYB_1999_35_1_a6
ER  - 
%0 Journal Article
%A Denis, Nikolaos
%A Looze, Douglas
%A Huang, Jim
%A Castañon, David
%T $H_\infty$ control design for an adaptive optics system
%J Kybernetika
%D 1999
%P 69-81
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a6/
%G en
%F KYB_1999_35_1_a6
Denis, Nikolaos; Looze, Douglas; Huang, Jim; Castañon, David. $H_\infty$ control design for an adaptive optics system. Kybernetika, Tome 35 (1999) no. 1, pp. 69-81. http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a6/

[1] Aubrun J. N., Lorell K. R., Mast T. S., Nelson J. E.: Dynamic analysis of the actively controlled segmented mirror of the W. M. Keck ten meter telescope. IEEE Control Systems Magazine, December 1987 | DOI

[2] Babcock H. W.: Adaptive optics revisited. Science 249 (1990), 253–257 | DOI

[3] Boyer C.: Adaptive optics for high resolution imagery: Control algorithms for optimized modal corrections. In: Proc. of the SPIE, Vol. 1780, 1992

[4] Downie J. D., Goodman J. W.: Optimal wavefront control for adaptive segmented mirrors. Appl. Optics 28 (1989), No. 4 | DOI

[5] Ellerbroek B. L., Loan C. Van, Pitsianis N., Plemmons R. J.: Optimizing closed loop adaptive optics performance using multiple control bandwidths. J. Opt. Soc. Amer. A 11 (1994) | DOI

[6] Francis B.: A Course in Control Theory. Springer–Verlag, Berlin 1987

[7] Huang J., Looze D. P., Denis N., Castañon D. A.: Dynamic modeling and identification of an adaptive optics system. In: Proc. 4th IEEE Conf. on Control Applications, Albany 1995

[8] Huang J., Looze D. P., Denis N., Castañon D. A.: Control designs for an adaptive optics system. In: 34th IEEE Conference on Decision and Control Proceedings, New Orleans 1995

[9] Moore B. C.: Principal components analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Control AC-26 (1981), No. 2 | DOI | MR

[11] Tebo A.: Adaptive Optics. OE Reports, No. 96, 1991

[12] Tyson R. K.: Principles of Adaptive Optics. Academic Press, San Diego 1991