Fuzzy linear programming via simulated annealing
Kybernetika, Tome 35 (1999) no. 1, pp. 57-67 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper shows how the simulated annealing (SA) algorithm provides a simple tool for solving fuzzy optimization problems. Often, the issue is not so much how to fuzzify or remove the conceptual imprecision, but which tools enable simple solutions for these intrinsically uncertain problems. A well-known linear programming example is used to discuss the suitability of the SA algorithm for solving fuzzy optimization problems.
This paper shows how the simulated annealing (SA) algorithm provides a simple tool for solving fuzzy optimization problems. Often, the issue is not so much how to fuzzify or remove the conceptual imprecision, but which tools enable simple solutions for these intrinsically uncertain problems. A well-known linear programming example is used to discuss the suitability of the SA algorithm for solving fuzzy optimization problems.
Classification : 90C08, 90C59, 90C70
Keywords: fuzzy optimization; simulated annealing
@article{KYB_1999_35_1_a5,
     author = {Ribeiro, Rita Almeida and Pires, Fernando Moura},
     title = {Fuzzy linear programming via simulated annealing},
     journal = {Kybernetika},
     pages = {57--67},
     year = {1999},
     volume = {35},
     number = {1},
     mrnumber = {1705530},
     zbl = {1274.90524},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a5/}
}
TY  - JOUR
AU  - Ribeiro, Rita Almeida
AU  - Pires, Fernando Moura
TI  - Fuzzy linear programming via simulated annealing
JO  - Kybernetika
PY  - 1999
SP  - 57
EP  - 67
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a5/
LA  - en
ID  - KYB_1999_35_1_a5
ER  - 
%0 Journal Article
%A Ribeiro, Rita Almeida
%A Pires, Fernando Moura
%T Fuzzy linear programming via simulated annealing
%J Kybernetika
%D 1999
%P 57-67
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a5/
%G en
%F KYB_1999_35_1_a5
Ribeiro, Rita Almeida; Pires, Fernando Moura. Fuzzy linear programming via simulated annealing. Kybernetika, Tome 35 (1999) no. 1, pp. 57-67. http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a5/

[1] Bellman R. D., Zadeh L. A.: Decision–making in a fuzzy environment. Management Sci. 17 (1970), 4, 141–164 | DOI | MR | Zbl

[2] Connoly D. T.: An improved annealing scheme for the QAP. European J. Oper. Res. 46 (1990), 93–100 | DOI | MR

[3] Connoly D.: General purpose simulated annealing. J. Oper. Res. Soc. 43 (1992), 5, 495–505 | DOI

[4] Eglese R. W.: Simulated annealing: A tool for operational research. European J. Oper. Res. 46 (1990), 271–281 | DOI | MR | Zbl

[5] Ishibuchi H., Tanaka H., Misaki S.: Fuzzy flow shop scheduling by simulated annealing. In: Fuzzy Optimization (M. Delgado, ed.), Physica–Verlag, Berlin 1994 | MR | Zbl

[6] Kickert W. J. M.: Fuzzy Theories on Decision Making. Frontiers in Systems Research, Vol 3. Martinus Nijhoff Social Sciences Division 1978 | MR | Zbl

[7] Kirkpatrick S., Gelatt C. D., Vecchi M. P.: Optimization by simulated annealing. Science 220 (1983), 4598, 671–680 | DOI | MR | Zbl

[8] Lai Y.-J., Hwang C.-L.: Fuzzy Multiple Objective Decision Making. (Lecture Notes in Economics and Mathematical Systems.) Springer–Verlag, Berlin 1994 | MR | Zbl

[9] Pires F. M., Moura J. Pires, Ribeiro R. A.: Solving fuzzy optimisation problems: Flexible approaches using simulated annealing. In: ISSCI’96, Montpelier 1996

[10] Ribeiro R. A., Pires F. M.: Fuzzy site location problems and simulated annealing. In: Series Studies in Locational Analysis (B. Boffey and E. Declerque, eds.), to appear

[11] Zeleny M.: Fuzziness, knowledge and optimization: New optimality concepts. In: Fuzzy Optimization (M. Delgado, J. Kacprzyk, J.-L. Verdegay and M. A. Vila, eds.), Physica–Verlag, Berlin 1994 | MR | Zbl

[12] Zimmermann H.-J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems 1 (1978), 45–55 | DOI | MR | Zbl

[13] Zimmermann H.-J.: Fuzzy Set Theory and its Applications. Third edition. Kluwer, Boston 1986 | MR | Zbl