Keywords: synthesis problems; predictability; ARMA model; Dioid algebra; reachability of the objective
@article{KYB_1999_35_1_a3,
author = {Declerck, Philippe},
title = {Predictability and control synthesis},
journal = {Kybernetika},
pages = {25--38},
year = {1999},
volume = {35},
number = {1},
mrnumber = {1705528},
zbl = {1274.93188},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a3/}
}
Declerck, Philippe. Predictability and control synthesis. Kybernetika, Tome 35 (1999) no. 1, pp. 25-38. http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a3/
[1] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity. An Algebra for Discrete Event Systems. Wiley, New York 1992 | MR | Zbl
[2] Bracker H.: Algorithms and Applications in Timed Discrete Event Systems. Ph.D thesis, Delft University of Technology, 1993
[3] Brat G. P., Garg V. K.: A max–plus algebra of signals for the supervisory control of real–time discrete event systems. In: 9th Symposium of the IFAC on Information Control in Manufacturing, Nancy–Metz 1998
[4] Cofer D. D., Garg V. K.: A timed model for the control of discrete event systems involving decisions in the max/plus algebra. In: Proc. 31st Conference on Decision and Control, Tucson 1992
[5] Cofer D. D.: Control and Analysis of Real–Time Discrete Event Systems. Ph.D. Thesis, University of Texas, Austin 1995
[6] Cofer D. D., Garg V. K.: Supervisory control of real–time discrete–event systems using lattice theory. IEEE Trans. Automat. Control 41 (1996), 2, 199–209 | DOI | MR | Zbl
[7] Cohen G., Gaubert S., Quadrat J.-P.: From first to second–order theory of linear discrete event systems. In: 1st IFAC World Congress, Sydney 1993
[8] Declerck, Ph.: “ARMA” model and admissible trajectories in timed event graphs. In: CESA’96, IMACS, IEEE–SMC, Lille 1996
[9] Declerck, Ph.: Control synthesis using the state equations and the “ARMA” model in timed event graphs. In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997
[10] Declerck, Ph., Mares M.: Temporal control synthesis and failure recovery. In: 9th Symposium of the IFAC on Information Control in Manufacturing, Nancy–Metz 1998
[11] Gaubert S.: Théorie des systèmes linéaires dans les dioïdes. Ph.D Thesis, Ecole des Mines de Paris 1992
[12] Gazarik M. J., Kamen E. W.: Reachability and observability of linear systems over max–plus. In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997, revised version: Kybernetika 35 (1999), 2–12 | MR
[13] Gondran M., Minoux M.: Graphes et algorithmes. Edition Eyrolles 1995 | Zbl
[14] Prou J.-M., Wagneur E.: Controllability in the max–algebra. In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997, revised version: Kybernetika 35 (1999), 13–24 | MR