Keywords: reachability; controllability; max-algebra
@article{KYB_1999_35_1_a2,
author = {Prou, Jean-Michel and Wagneur, Edouard},
title = {Controllability in the max-algebra},
journal = {Kybernetika},
pages = {13--24},
year = {1999},
volume = {35},
number = {1},
mrnumber = {1705527},
zbl = {1274.93036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a2/}
}
Prou, Jean-Michel; Wagneur, Edouard. Controllability in the max-algebra. Kybernetika, Tome 35 (1999) no. 1, pp. 13-24. http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a2/
[1] G: Birkhoff: Lattice Theory. A.M.S. Coll. Pub. Vol. XXV, Providence 1967 | MR
[2] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity. Wiley, Chichester 1992 | MR | Zbl
[3] Cunninghame–Green R. A.: Minimax Algebra. (Lecture Notes in Economics and Mathematical Systems 83.) Springer–Verlag, Berlin 1979 | MR
[4] Gaubert S.: Théorie des Systèmes linéaires dans les Dioïdes. Thèse. Ecole Nationale Supérieure des Mines de Paris 1992
[5] Gazarik M. J., Kamen E. W.: Reachability and observability of linear system over Max–Plus. In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997, revised version: Kybernetika 35 (1999), 2–12 | MR
[6] Gondran M., Minoux M.: Valeurs propres et vecteurs propres dans les dioïdes et leur interprétation en théorie des graphes. EDF Bull. Direction Études Rech. Sér. C Math. Inform. 2 (1977), 25–41
[8] Prou J.-M.: Thèse. Ecole Centrale de Nantes 1997
[9] Wagneur E.: Moduloïds and Pseudomodules. 1. Dimension Theory. Discrete Math. 98 (1991), 57–73 | DOI | MR | Zbl