Controllability in the max-algebra
Kybernetika, Tome 35 (1999) no. 1, pp. 13-24 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We are interested here in the reachability and controllability problems for DEDS in the max-algebra. Contrary to the situation in linear systems theory, where controllability (resp observability) refers to a (linear) subspace, these properties are essentially discrete in the $\max $-linear dynamic system. We show that these problems, which consist in solving a $\max $-linear equation lead to an eigenvector problem in the $\min $-algebra. More precisely, we show that, given a $\max $-linear system, then, for every natural number $k\ge 1\,$, there is a matrix $\Gamma _k$ whose $\min $-eigenspace associated with the eigenvalue $1$ (or $\min $-fixed points set) contains all the states which are reachable in $k$ steps. This means in particular that if a state is not in this eigenspace, then it is not controllable. Also, we give an indirect characterization of $\Gamma _k$ for the condition to be sufficient. A similar result also holds by duality on the observability side.
We are interested here in the reachability and controllability problems for DEDS in the max-algebra. Contrary to the situation in linear systems theory, where controllability (resp observability) refers to a (linear) subspace, these properties are essentially discrete in the $\max $-linear dynamic system. We show that these problems, which consist in solving a $\max $-linear equation lead to an eigenvector problem in the $\min $-algebra. More precisely, we show that, given a $\max $-linear system, then, for every natural number $k\ge 1\,$, there is a matrix $\Gamma _k$ whose $\min $-eigenspace associated with the eigenvalue $1$ (or $\min $-fixed points set) contains all the states which are reachable in $k$ steps. This means in particular that if a state is not in this eigenspace, then it is not controllable. Also, we give an indirect characterization of $\Gamma _k$ for the condition to be sufficient. A similar result also holds by duality on the observability side.
Classification : 15A80, 93B05, 93B18, 93C65
Keywords: reachability; controllability; max-algebra
@article{KYB_1999_35_1_a2,
     author = {Prou, Jean-Michel and Wagneur, Edouard},
     title = {Controllability in the max-algebra},
     journal = {Kybernetika},
     pages = {13--24},
     year = {1999},
     volume = {35},
     number = {1},
     mrnumber = {1705527},
     zbl = {1274.93036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a2/}
}
TY  - JOUR
AU  - Prou, Jean-Michel
AU  - Wagneur, Edouard
TI  - Controllability in the max-algebra
JO  - Kybernetika
PY  - 1999
SP  - 13
EP  - 24
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a2/
LA  - en
ID  - KYB_1999_35_1_a2
ER  - 
%0 Journal Article
%A Prou, Jean-Michel
%A Wagneur, Edouard
%T Controllability in the max-algebra
%J Kybernetika
%D 1999
%P 13-24
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a2/
%G en
%F KYB_1999_35_1_a2
Prou, Jean-Michel; Wagneur, Edouard. Controllability in the max-algebra. Kybernetika, Tome 35 (1999) no. 1, pp. 13-24. http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a2/

[1] G: Birkhoff: Lattice Theory. A.M.S. Coll. Pub. Vol. XXV, Providence 1967 | MR

[2] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity. Wiley, Chichester 1992 | MR | Zbl

[3] Cunninghame–Green R. A.: Minimax Algebra. (Lecture Notes in Economics and Mathematical Systems 83.) Springer–Verlag, Berlin 1979 | MR

[4] Gaubert S.: Théorie des Systèmes linéaires dans les Dioïdes. Thèse. Ecole Nationale Supérieure des Mines de Paris 1992

[5] Gazarik M. J., Kamen E. W.: Reachability and observability of linear system over Max–Plus. In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997, revised version: Kybernetika 35 (1999), 2–12 | MR

[6] Gondran M., Minoux M.: Valeurs propres et vecteurs propres dans les dioïdes et leur interprétation en théorie des graphes. EDF Bull. Direction Études Rech. Sér. C Math. Inform. 2 (1977), 25–41

[8] Prou J.-M.: Thèse. Ecole Centrale de Nantes 1997

[9] Wagneur E.: Moduloïds and Pseudomodules. 1. Dimension Theory. Discrete Math. 98 (1991), 57–73 | DOI | MR | Zbl