A conservative spectral element method for the approximation of compressible fluid flow
Kybernetika, Tome 35 (1999) no. 1, pp. 133-146 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A method to approximate the Euler equations is presented. The method is a multi-domain approximation, and a variational form of the Euler equations is found by making use of the divergence theorem. The method is similar to that of the Discontinuous-Galerkin method of Cockburn and Shu, but the implementation is constructed through a spectral, multi-domain approach. The method is introduced and is shown to be a conservative scheme. A numerical example is given for the expanding flow around a point source as a comparison with the method proposed by Kopriva.
A method to approximate the Euler equations is presented. The method is a multi-domain approximation, and a variational form of the Euler equations is found by making use of the divergence theorem. The method is similar to that of the Discontinuous-Galerkin method of Cockburn and Shu, but the implementation is constructed through a spectral, multi-domain approach. The method is introduced and is shown to be a conservative scheme. A numerical example is given for the expanding flow around a point source as a comparison with the method proposed by Kopriva.
Classification : 65M70, 76M22, 76M25, 76N10
Keywords: spectral element method; Euler equation; multi-domain approach
@article{KYB_1999_35_1_a11,
     author = {Black, Kelly},
     title = {A conservative spectral element method for the approximation of compressible fluid flow},
     journal = {Kybernetika},
     pages = {133--146},
     year = {1999},
     volume = {35},
     number = {1},
     mrnumber = {1705536},
     zbl = {1274.76271},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a11/}
}
TY  - JOUR
AU  - Black, Kelly
TI  - A conservative spectral element method for the approximation of compressible fluid flow
JO  - Kybernetika
PY  - 1999
SP  - 133
EP  - 146
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a11/
LA  - en
ID  - KYB_1999_35_1_a11
ER  - 
%0 Journal Article
%A Black, Kelly
%T A conservative spectral element method for the approximation of compressible fluid flow
%J Kybernetika
%D 1999
%P 133-146
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a11/
%G en
%F KYB_1999_35_1_a11
Black, Kelly. A conservative spectral element method for the approximation of compressible fluid flow. Kybernetika, Tome 35 (1999) no. 1, pp. 133-146. http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a11/

[1] Bassi F., Rebay S.: A high–order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131 (1997), 267–279, 1997 | DOI | MR | Zbl

[2] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws II: General framework. Math. Comp. 52 (1989) | MR

[3] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84 (1989), 90 | DOI | MR

[4] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws IV: The multidimensional case. Math. Comp. 54 (1990) | MR

[5] Courant R., Friedrichs K. O.: Supersonic Flow and Shock Waves. Applied Mathematical Sciences. Springer–Verlag, New York 1948 | MR | Zbl

[6] Gordon W. J., Hall C. A.: Transfinite element methods: Blending–function interpolation over arbitrary curved element domains. Numer. Math. 21 (1973), 109–129 | DOI | MR | Zbl

[7] Harten A., Lax P. D., Leer B. Van: On upstream differencing and Godunov–type schemes for hyperbolic conservation laws. SIAM Review 25 (1983), 1, 35–61 | DOI | MR

[8] Hesthaven J. S.: A stable penalty method for the compressible Navier–Stokes equations II: One dimensional domain decomposition schemes, to appea.

[9] Hesthaven J. S.: A stable penalty method for the compressible Navier–Stokes equations III: Multi dimensional domain decomposition schemes, to appea.

[10] Hesthaven J. S., Gottlieb D.: A stable penalty method for the compressible Navier–Stokes equations. I. Open boundary conditions. SIAM J. Sci. Statist. Comput 17 (1996), 3, 579–612 | DOI | MR | Zbl

[11] Kopriva D. A.: A Conservative Staggered Grid Chebychev Multi–Domain Method for Compressible Flows. II: A Semi–Structured Method. NASA Contractor Report ICASE Report No. 96-15, ICASE, NASA Langley Research Center, 1996

[12] Kopriva D. A., Kolias J. H.: A conservative staggered grid Chebychev multi–domain method for compressible flows. J. Comput. Phys. 125 (1996), 1, 244–261 | DOI | MR

[13] Rumsey C., Leer B. van, Roe P. L.: A multidimensional flux function with applications to the Euler and Navier–Stokes equations. J. Comput. Phys. 105 (1993), 306–323 | DOI | MR