Keywords: spectral element method; Euler equation; multi-domain approach
@article{KYB_1999_35_1_a11,
author = {Black, Kelly},
title = {A conservative spectral element method for the approximation of compressible fluid flow},
journal = {Kybernetika},
pages = {133--146},
year = {1999},
volume = {35},
number = {1},
mrnumber = {1705536},
zbl = {1274.76271},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a11/}
}
Black, Kelly. A conservative spectral element method for the approximation of compressible fluid flow. Kybernetika, Tome 35 (1999) no. 1, pp. 133-146. http://geodesic.mathdoc.fr/item/KYB_1999_35_1_a11/
[1] Bassi F., Rebay S.: A high–order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131 (1997), 267–279, 1997 | DOI | MR | Zbl
[2] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws II: General framework. Math. Comp. 52 (1989) | MR
[3] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84 (1989), 90 | DOI | MR
[4] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws IV: The multidimensional case. Math. Comp. 54 (1990) | MR
[5] Courant R., Friedrichs K. O.: Supersonic Flow and Shock Waves. Applied Mathematical Sciences. Springer–Verlag, New York 1948 | MR | Zbl
[6] Gordon W. J., Hall C. A.: Transfinite element methods: Blending–function interpolation over arbitrary curved element domains. Numer. Math. 21 (1973), 109–129 | DOI | MR | Zbl
[7] Harten A., Lax P. D., Leer B. Van: On upstream differencing and Godunov–type schemes for hyperbolic conservation laws. SIAM Review 25 (1983), 1, 35–61 | DOI | MR
[8] Hesthaven J. S.: A stable penalty method for the compressible Navier–Stokes equations II: One dimensional domain decomposition schemes, to appea.
[9] Hesthaven J. S.: A stable penalty method for the compressible Navier–Stokes equations III: Multi dimensional domain decomposition schemes, to appea.
[10] Hesthaven J. S., Gottlieb D.: A stable penalty method for the compressible Navier–Stokes equations. I. Open boundary conditions. SIAM J. Sci. Statist. Comput 17 (1996), 3, 579–612 | DOI | MR | Zbl
[11] Kopriva D. A.: A Conservative Staggered Grid Chebychev Multi–Domain Method for Compressible Flows. II: A Semi–Structured Method. NASA Contractor Report ICASE Report No. 96-15, ICASE, NASA Langley Research Center, 1996
[12] Kopriva D. A., Kolias J. H.: A conservative staggered grid Chebychev multi–domain method for compressible flows. J. Comput. Phys. 125 (1996), 1, 244–261 | DOI | MR
[13] Rumsey C., Leer B. van, Roe P. L.: A multidimensional flux function with applications to the Euler and Navier–Stokes equations. J. Comput. Phys. 105 (1993), 306–323 | DOI | MR