Keywords: optimal control of stochastic systems; sufficient statistic algebra; finite-dimensional controllers
@article{KYB_1998_34_6_a9,
author = {Charalambous, Charalambos D.},
title = {Finite-dimensionality of information states in optimal control of stochastic systems: a {Lie} algebraic approach},
journal = {Kybernetika},
pages = {725--738},
year = {1998},
volume = {34},
number = {6},
mrnumber = {1695374},
zbl = {1274.93281},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a9/}
}
TY - JOUR AU - Charalambous, Charalambos D. TI - Finite-dimensionality of information states in optimal control of stochastic systems: a Lie algebraic approach JO - Kybernetika PY - 1998 SP - 725 EP - 738 VL - 34 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a9/ LA - en ID - KYB_1998_34_6_a9 ER -
Charalambous, Charalambos D. Finite-dimensionality of information states in optimal control of stochastic systems: a Lie algebraic approach. Kybernetika, Tome 34 (1998) no. 6, pp. 725-738. http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a9/
[1] Beneš V.: Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics 5 (1981), 65–92 | DOI | MR | Zbl
[2] Brockett R., Clark J.: Geometry of the conditional density equation. In: Proceedings of the International Conference on Analysis and Optimization of Stochastic Systems, Oxford 1978 | Zbl
[3] Charalambous C.: Partially observable nonlinear risk-sensitive control problems: Dynamic programming and verification theorems. IEEE Trans. Automat. Control, to appear | MR | Zbl
[4] Charalambous C., Elliott R.: Certain nonlinear stochastic optimal control problems with explicit control laws equivalent to LEQG/LQG problems. IEEE Trans. Automat. Control 42 (1997), 4. 482–497 | DOI | MR
[5] Charalambous C., Hibey J.: Minimum principle for partially observable nonlinear risk-sensitive control problems using measure-valued decompositions. Stochastics and Stochastics Reports 57 (1996), 2, 247–288 | DOI | MR | Zbl
[6] Charalambous C., Naidu D., Moore K.: Solvable risk-sensitive control problems with output feedback. In: Proceedings of 33rd IEEE Conference on Decision and Control, Lake Buena Vista 1994, pp. 1433–1434
[7] Chen J., Yau S.-T., Leung C.-W.: Finite-dimensional filters with nonlinear drift IV: Classification of finite-dimensional estimation algebras of maximal rank with state-space dimension $3$. SIAM J. Control Optim. 34 (1996), 1, 179–198 | DOI | MR | Zbl
[8] Hazewinkel M., Willems J.: Stochastic systems: The mathematics of filtering and identification, and applications. In: Proceedings of the NATO Advanced Study Institute, D. Reidel, Dordrecht 1981 | MR | Zbl
[9] Marcus S.: Algebraic and geometric methods in nonlinear filtering. SIAM J. Control Optim. 26 (1984), 5, 817–844 | DOI | MR | Zbl