Finite-dimensionality of information states in optimal control of stochastic systems: a Lie algebraic approach
Kybernetika, Tome 34 (1998) no. 6, pp. 725-738 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce the sufficient statistic algebra which is responsible for propagating the sufficient statistic, or information state, in the optimal control of stochastic systems. Certain Lie algebraic methods widely used in nonlinear control theory, are then employed to derive finite- dimensional controllers. The sufficient statistic algebra enables us to determine a priori whether there exist finite-dimensional controllers; it also enables us to classify all finite-dimensional controllers.
In this paper we introduce the sufficient statistic algebra which is responsible for propagating the sufficient statistic, or information state, in the optimal control of stochastic systems. Certain Lie algebraic methods widely used in nonlinear control theory, are then employed to derive finite- dimensional controllers. The sufficient statistic algebra enables us to determine a priori whether there exist finite-dimensional controllers; it also enables us to classify all finite-dimensional controllers.
Classification : 49K45, 93B25, 93E20
Keywords: optimal control of stochastic systems; sufficient statistic algebra; finite-dimensional controllers
@article{KYB_1998_34_6_a9,
     author = {Charalambous, Charalambos D.},
     title = {Finite-dimensionality of information states in optimal control of stochastic systems: a {Lie} algebraic approach},
     journal = {Kybernetika},
     pages = {725--738},
     year = {1998},
     volume = {34},
     number = {6},
     mrnumber = {1695374},
     zbl = {1274.93281},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a9/}
}
TY  - JOUR
AU  - Charalambous, Charalambos D.
TI  - Finite-dimensionality of information states in optimal control of stochastic systems: a Lie algebraic approach
JO  - Kybernetika
PY  - 1998
SP  - 725
EP  - 738
VL  - 34
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a9/
LA  - en
ID  - KYB_1998_34_6_a9
ER  - 
%0 Journal Article
%A Charalambous, Charalambos D.
%T Finite-dimensionality of information states in optimal control of stochastic systems: a Lie algebraic approach
%J Kybernetika
%D 1998
%P 725-738
%V 34
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a9/
%G en
%F KYB_1998_34_6_a9
Charalambous, Charalambos D. Finite-dimensionality of information states in optimal control of stochastic systems: a Lie algebraic approach. Kybernetika, Tome 34 (1998) no. 6, pp. 725-738. http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a9/

[1] Beneš V.: Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics 5 (1981), 65–92 | DOI | MR | Zbl

[2] Brockett R., Clark J.: Geometry of the conditional density equation. In: Proceedings of the International Conference on Analysis and Optimization of Stochastic Systems, Oxford 1978 | Zbl

[3] Charalambous C.: Partially observable nonlinear risk-sensitive control problems: Dynamic programming and verification theorems. IEEE Trans. Automat. Control, to appear | MR | Zbl

[4] Charalambous C., Elliott R.: Certain nonlinear stochastic optimal control problems with explicit control laws equivalent to LEQG/LQG problems. IEEE Trans. Automat. Control 42 (1997), 4. 482–497 | DOI | MR

[5] Charalambous C., Hibey J.: Minimum principle for partially observable nonlinear risk-sensitive control problems using measure-valued decompositions. Stochastics and Stochastics Reports 57 (1996), 2, 247–288 | DOI | MR | Zbl

[6] Charalambous C., Naidu D., Moore K.: Solvable risk-sensitive control problems with output feedback. In: Proceedings of 33rd IEEE Conference on Decision and Control, Lake Buena Vista 1994, pp. 1433–1434

[7] Chen J., Yau S.-T., Leung C.-W.: Finite-dimensional filters with nonlinear drift IV: Classification of finite-dimensional estimation algebras of maximal rank with state-space dimension $3$. SIAM J. Control Optim. 34 (1996), 1, 179–198 | DOI | MR | Zbl

[8] Hazewinkel M., Willems J.: Stochastic systems: The mathematics of filtering and identification, and applications. In: Proceedings of the NATO Advanced Study Institute, D. Reidel, Dordrecht 1981 | MR | Zbl

[9] Marcus S.: Algebraic and geometric methods in nonlinear filtering. SIAM J. Control Optim. 26 (1984), 5, 817–844 | DOI | MR | Zbl