Keywords: option pricing; stocks pricing evolution; Black-Scholes formula
@article{KYB_1998_34_6_a8,
author = {Kolokoltsov, Vassili N.},
title = {Nonexpansive maps and option pricing theory},
journal = {Kybernetika},
pages = {713--724},
year = {1998},
volume = {34},
number = {6},
mrnumber = {1695373},
zbl = {1274.91420},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a8/}
}
Kolokoltsov, Vassili N. Nonexpansive maps and option pricing theory. Kybernetika, Tome 34 (1998) no. 6, pp. 713-724. http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a8/
[1] Baccelli F., Cohen G., Olsder G., Quadrat J.-P.: Synchronisation and Linearity: An Algebra for Discrete Event Systems. Wiley, New York 1992 | MR
[2] Cox J. C., Ross S. A., Rubinstein M.: Option pricing: A simplified approach. J. Financial Economics 7 (1979), 229–263 | DOI | Zbl
[3] (Ed.) J. Gunawardena: Proceedings of the International Workshop “Idempotency”, Bristol 1994. Cambridge Univ. Press, Cambridge 1998 | MR
[4] Kolokoltsov V. N.: A Formula for Option Prices on a Market with Unknown Volatility. Research Report No. 9/96, Dep. Math. Stat. and O. R., Nottingham Trent University 1996
[5] Kolokoltsov V. N., Maslov V. P.: Idempotent Analysis and its Applications. Kluwer Academic Publishers, Dordrecht 1997 | MR | Zbl
[6] Lions T.: Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance 2 (1995), 117–133 | DOI
[7] McEneaney W. M.: A robust control framework for option pricing. Math. Oper. Research 22 (1997), 202–221 | DOI | MR | Zbl