Keywords: nonlinear evolution equation; parameter estimation
@article{KYB_1998_34_6_a7,
author = {Ackleh, Azmy S. and Ferdinand, Robert R. and Reich, Simeon},
title = {Numerical studies of parameter estimation techniques for nonlinear evolution equations},
journal = {Kybernetika},
pages = {693--712},
year = {1998},
volume = {34},
number = {6},
mrnumber = {1695372},
zbl = {1274.34177},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a7/}
}
TY - JOUR AU - Ackleh, Azmy S. AU - Ferdinand, Robert R. AU - Reich, Simeon TI - Numerical studies of parameter estimation techniques for nonlinear evolution equations JO - Kybernetika PY - 1998 SP - 693 EP - 712 VL - 34 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a7/ LA - en ID - KYB_1998_34_6_a7 ER -
Ackleh, Azmy S.; Ferdinand, Robert R.; Reich, Simeon. Numerical studies of parameter estimation techniques for nonlinear evolution equations. Kybernetika, Tome 34 (1998) no. 6, pp. 693-712. http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a7/
[1] Ackleh A. S., Fitzpatrick B. G.: Estimation of time dependent parameters in general parabolic evolution systems. J. Math. Anal. Appl. 203 (1996), 464–480 | DOI | MR | Zbl
[2] Ackleh A. S., Fitzpatrick B. G.: Estimation of discontinuous parameters in general parabolic systems. Kybernetika 32 (1996), 543–556 | MR
[3] Ackleh A. S., Reich S.: Parameter Estimation in Nonlinear Evolution Equations. Numer. Funct. Anal. Optim. 19 (1998), 933–947 | DOI | MR | Zbl
[4] Banks H. T., Kunisch K.: Estimation Techniques for Distributed Parameter Systems. Birkhäuser, Boston – Basel 1989 | MR | Zbl
[5] Banks H. T., Lo C. K., Reich S., Rosen I. G.: Numerical studies of identification in nonlinear distributed parameter systems. Internat. Ser. Numer. Math. 91 (1989), 1–20 | MR | Zbl
[6] Banks H. T., Reich S., Rosen I. G.: An approximation theory for the identification of nonlinear distributed parameter systems. SIAM J. Control Optim. 28 (1990), 552–569 | DOI | MR | Zbl
[7] Banks H. T., Reich S., Rosen I. G.: Estimation of nonlinear damping in second order distributed parameter systems. Control Theory and Advanced Technology 6 (1990), 395–415 | MR
[8] Banks H. T., Reich S., Rosen I. G.: Galerkin Approximation for inverse problems for nonautonomous nonlinear distributed systems. Appl. Math. Optim. 24 (1991), 233–256 | DOI | MR | Zbl
[9] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden 1976 | MR | Zbl
[10] Bear J.: Dynamics of Fluids in Porous Media. Elsevier, New York 1972 | Zbl
[11] Canuto C., Quateroni A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comp. 38 (1982), 67–86 | DOI | MR
[12] Fitzpatrick B. G.: Analysis and approximation for inverse problems in contaminant transport and biodegradation models. Numer. Funct. Anal. Optim. 16 (1995), 847–866 | DOI | MR | Zbl
[13] Freeze R. A., Cherry J.: Groundwater. Prentice–Hall, Englewood Cliffs, N. J. 1979
[14] Johnson C.: Numerical Solution of Partial Differential Equations by The Finite Element Method. Cambridge Univ. Press, Cambridge 1987 | MR | Zbl
[15] Kluge R., Langmach H.: On some Problems of Determination of Functional Parameters in Partial Differential Equations, In: Distributed Parameter Systems: Modeling and Identification (Lecture Notes in Control and Information Sciences 1). Springer–Verlag, Berlin 1978, pp. 298–309 | MR
[16] Pao C. V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York 1992 | MR | Zbl
[17] Schultz M. H.: Spline Analysis. Prentice–Hall, Englewood Cliffs, N. J. 1973 | MR | Zbl
[18] Swartz B. K., Varga R. S.: Error bounds for spline and $L$-spline interpolation. J. Approx. Theory 6 (1972), 6–49 | DOI | MR | Zbl