Keywords: hidden Markov model; estimation and control problem; risk sensitive control problem; stochastic approximation techniques; asymptotic convergence
@article{KYB_1998_34_6_a10,
author = {Frankpitt, Bernard and Baras, John S.},
title = {Estimation of hidden {Markov} models for a partially observed risk sensitive control problem},
journal = {Kybernetika},
pages = {739--746},
year = {1998},
volume = {34},
number = {6},
mrnumber = {1695375},
zbl = {1274.93254},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a10/}
}
TY - JOUR AU - Frankpitt, Bernard AU - Baras, John S. TI - Estimation of hidden Markov models for a partially observed risk sensitive control problem JO - Kybernetika PY - 1998 SP - 739 EP - 746 VL - 34 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a10/ LA - en ID - KYB_1998_34_6_a10 ER -
Frankpitt, Bernard; Baras, John S. Estimation of hidden Markov models for a partially observed risk sensitive control problem. Kybernetika, Tome 34 (1998) no. 6, pp. 739-746. http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a10/
[1] Arapostathis A., Marcus S. I.: Analysis of an identification algorithm arising in the adaptive estimation of Markov chains. Mathematics of Control, Signals and Systems 3 (1990),1–29 | DOI | MR | Zbl
[2] Baras J. S., James M. R.: Robust and Risk–Sensitive Output Feedback Control for Finite State Machines and Hidden Markov Models, to be publishe.
[3] Benveniste A., Métivier M., Priouret P.: Adaptive Algorithms and Stochastic Approximations. Springer–Verlag, Berlin 1990. Translation of “Algorithmes adaptatifs et approximations stochastiques”, Masson, Paris 1987 | MR | Zbl
[4] Fernandéz–Gaucherand E., Marcus S. I.: Risk–Sensitive Optimal Control of Hidden Markov Models: Structural Results. Technical Report TR 96-79, Institute for Systems Research, University of Maryland, College Park, Maryland 1996 | Zbl
[5] Fernandéz–Gaucherand E., Arapostathis A., Marcus S. I.: Analysis of an adaptive control scheme for a partially observed controlled Markov chain. IEEE Trans. Automat. Control 38 (1993), 6, 987–993 | DOI | MR | Zbl
[6] Krishnamurthy, V, Moore J. B.: On–line estimation of hidden Markov model parameters based on the. IEEE Trans. Signal Processing 41 (1993), 8, 2557–2573 | Zbl
[7] Gland F. Le, Mevel L.: Geometric Ergodicity in Hidden Markov Models. Technical Report No. 1028, IRISA/INRIA, Campus de Beaulieu, Renees 1996 | Zbl