Estimation of hidden Markov models for a partially observed risk sensitive control problem
Kybernetika, Tome 34 (1998) no. 6, pp. 739-746 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper provides a summary of our recent work on the problem of combined estimation and control of systems described by finite state, hidden Markov models. We establish the stochastic framework for the problem, formulate a separated control policy with risk-sensitive cost functional, describe an estimation scheme for the parameters of the hidden Markov model that describes the plant, and finally indicate how the combined estimation and control problem can be re-formulated in a framework that permits an application of stochastic approximation techniques to the proof of asymptotic convergence of the estimator.
This paper provides a summary of our recent work on the problem of combined estimation and control of systems described by finite state, hidden Markov models. We establish the stochastic framework for the problem, formulate a separated control policy with risk-sensitive cost functional, describe an estimation scheme for the parameters of the hidden Markov model that describes the plant, and finally indicate how the combined estimation and control problem can be re-formulated in a framework that permits an application of stochastic approximation techniques to the proof of asymptotic convergence of the estimator.
Classification : 91B30, 93E10, 93E20
Keywords: hidden Markov model; estimation and control problem; risk sensitive control problem; stochastic approximation techniques; asymptotic convergence
@article{KYB_1998_34_6_a10,
     author = {Frankpitt, Bernard and Baras, John S.},
     title = {Estimation of hidden {Markov} models for a partially observed risk sensitive control problem},
     journal = {Kybernetika},
     pages = {739--746},
     year = {1998},
     volume = {34},
     number = {6},
     mrnumber = {1695375},
     zbl = {1274.93254},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a10/}
}
TY  - JOUR
AU  - Frankpitt, Bernard
AU  - Baras, John S.
TI  - Estimation of hidden Markov models for a partially observed risk sensitive control problem
JO  - Kybernetika
PY  - 1998
SP  - 739
EP  - 746
VL  - 34
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a10/
LA  - en
ID  - KYB_1998_34_6_a10
ER  - 
%0 Journal Article
%A Frankpitt, Bernard
%A Baras, John S.
%T Estimation of hidden Markov models for a partially observed risk sensitive control problem
%J Kybernetika
%D 1998
%P 739-746
%V 34
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a10/
%G en
%F KYB_1998_34_6_a10
Frankpitt, Bernard; Baras, John S. Estimation of hidden Markov models for a partially observed risk sensitive control problem. Kybernetika, Tome 34 (1998) no. 6, pp. 739-746. http://geodesic.mathdoc.fr/item/KYB_1998_34_6_a10/

[1] Arapostathis A., Marcus S. I.: Analysis of an identification algorithm arising in the adaptive estimation of Markov chains. Mathematics of Control, Signals and Systems 3 (1990),1–29 | DOI | MR | Zbl

[2] Baras J. S., James M. R.: Robust and Risk–Sensitive Output Feedback Control for Finite State Machines and Hidden Markov Models, to be publishe.

[3] Benveniste A., Métivier M., Priouret P.: Adaptive Algorithms and Stochastic Approximations. Springer–Verlag, Berlin 1990. Translation of “Algorithmes adaptatifs et approximations stochastiques”, Masson, Paris 1987 | MR | Zbl

[4] Fernandéz–Gaucherand E., Marcus S. I.: Risk–Sensitive Optimal Control of Hidden Markov Models: Structural Results. Technical Report TR 96-79, Institute for Systems Research, University of Maryland, College Park, Maryland 1996 | Zbl

[5] Fernandéz–Gaucherand E., Arapostathis A., Marcus S. I.: Analysis of an adaptive control scheme for a partially observed controlled Markov chain. IEEE Trans. Automat. Control 38 (1993), 6, 987–993 | DOI | MR | Zbl

[6] Krishnamurthy, V, Moore J. B.: On–line estimation of hidden Markov model parameters based on the. IEEE Trans. Signal Processing 41 (1993), 8, 2557–2573 | Zbl

[7] Gland F. Le, Mevel L.: Geometric Ergodicity in Hidden Markov Models. Technical Report No. 1028, IRISA/INRIA, Campus de Beaulieu, Renees 1996 | Zbl