Keywords: robust exponential stability; deterministic uncertainties; nonlinear system; system design; robust controller
@article{KYB_1998_34_5_a6,
author = {Vesel\'y, Vojtech and Rosinov\'a, Danica},
title = {Robust exponential stability of a class of nonlinear systems},
journal = {Kybernetika},
pages = {579--594},
year = {1998},
volume = {34},
number = {5},
mrnumber = {1663744},
zbl = {1274.93223},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a6/}
}
Veselý, Vojtech; Rosinová, Danica. Robust exponential stability of a class of nonlinear systems. Kybernetika, Tome 34 (1998) no. 5, pp. 579-594. http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a6/
[2] Brogliato B., Neto A. T.: Practical stabilization of a class of nonlinear systems with partially known uncertainties. Automatica 31, (1995), 1, 145–150 | DOI | MR | Zbl
[3] Chua L. Q., Wu C. W., Huang A., Zhong G. Q.: A universal circuit for studying and generating chaos. Part 1. IEEE Trans. Circuits and Systems (1993), 10, 732–744 | MR | Zbl
[4] Corles M.: Control of uncertain nonlinear systems. ASME J. Dyn. Syst. Meas. Control 115 (1993), 362–372 | DOI
[5] Dubrov A. M., Zuber I. E.: Design of exponentially stable control systems for a range of nonlinear processes. Automat. Remote Control (1989), 8, 33–40 | MR
[6] Fradkov A. L., Pogromsky A. Yu., Markov A. Yu.: Adaptive control of chaotic continuously–time systems. In: Proc. 3rd EC Conference, Roma 1995, pp. 3062–3067
[7] Gaiduk A. R.: Analytical controller design for a class of nonlinear systems. Automat. Remote Control (1993), 3, 22–33
[8] Gaiduk A. R.: Analytical nonlinear control systems design. In: Proc. 3rd EC Conference, Roma 1995, pp. 1503–1505
[9] Jury E. I.: Robustness of discrete systems: A review. In: Proc. 11th IFAC World Congres, Tallin 1990, pp. 184–186 | MR
[10] Konstantopoulos I. K., Antsaklis P. J.: New bounds for robust stability of continuous and discrete–time systems under parametric uncertainty. Kybernetika 31 (1995), 6, 623–636 | MR | Zbl
[11] Kozák Š.: Simple and robust PID controller. Appl. Math. Comput. 70 (1995), 2–8 | DOI
[13] Kučera V., DeSouza C. E.: A necessary and sufficient conditions for output feedback stabilizability. Automatica 31 (1995), 1357–1359 | DOI | MR
[14] Leitman G.: One method for robust control of uncertain systems: Theory and practice. Kybernetika 32 (1996), 1, 43–62 | MR
[15] Niculescu S. I., DeSouza C. E., Dugard L., Dion J. M.: Robust exponential stability of uncertain systems with time–varying delays. In: Proc. 3rd EC Conference, Roma 1995, pp. 1802–1807
[16] Poolla K. S., Shamma J. S., Wise K. A.: Linear and nonlinear controller for robust stabilization problem: A survey. In: Proc. 11th IFAC World Congres, Tallin 1990, pp. 176–183
[17] Prokop P., Corriou J. P.: Design and analysis of simple robust controllers. Internat. J. Control 66 (1997), 6, 905–921 | DOI | MR | Zbl
[18] Gong, Zhiming, Wen, Changyun, Mital, Dinesh P.: Decentralized robust controller design for a class of interconnected uncertain systems: with known or unknown bound of uncertainty. In: Proc. 3rd EC Conference, Roma 1995, pp. 2940–2945 | MR
[19] Qu, Zhihua, Dorsey J.: Robust control by two Lyapunov functions. Internat J. Control 55 (1992), 1335–1350 | DOI | MR | Zbl
[20] Qu, Zhihua: Asymptotic stability of controlling uncertain dynamical systems. Internat. J. Control 59 (1994), 1345–1355 | DOI | MR | Zbl