Robust exponential stability of a class of nonlinear systems
Kybernetika, Tome 34 (1998) no. 5, pp. 579-594 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper addresses the problem of design of a robust controller for a class of nonlinear uncertain systems to guarantee the prescribed decay rate of exponential stability. The bounded deterministic uncertainties are considered both in a studied system and its input part. The proposed approach does not employ matching conditions.
The paper addresses the problem of design of a robust controller for a class of nonlinear uncertain systems to guarantee the prescribed decay rate of exponential stability. The bounded deterministic uncertainties are considered both in a studied system and its input part. The proposed approach does not employ matching conditions.
Classification : 93B51, 93D09, 93D20
Keywords: robust exponential stability; deterministic uncertainties; nonlinear system; system design; robust controller
@article{KYB_1998_34_5_a6,
     author = {Vesel\'y, Vojtech and Rosinov\'a, Danica},
     title = {Robust exponential stability of a class of nonlinear systems},
     journal = {Kybernetika},
     pages = {579--594},
     year = {1998},
     volume = {34},
     number = {5},
     mrnumber = {1663744},
     zbl = {1274.93223},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a6/}
}
TY  - JOUR
AU  - Veselý, Vojtech
AU  - Rosinová, Danica
TI  - Robust exponential stability of a class of nonlinear systems
JO  - Kybernetika
PY  - 1998
SP  - 579
EP  - 594
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a6/
LA  - en
ID  - KYB_1998_34_5_a6
ER  - 
%0 Journal Article
%A Veselý, Vojtech
%A Rosinová, Danica
%T Robust exponential stability of a class of nonlinear systems
%J Kybernetika
%D 1998
%P 579-594
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a6/
%G en
%F KYB_1998_34_5_a6
Veselý, Vojtech; Rosinová, Danica. Robust exponential stability of a class of nonlinear systems. Kybernetika, Tome 34 (1998) no. 5, pp. 579-594. http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a6/

[2] Brogliato B., Neto A. T.: Practical stabilization of a class of nonlinear systems with partially known uncertainties. Automatica 31, (1995), 1, 145–150 | DOI | MR | Zbl

[3] Chua L. Q., Wu C. W., Huang A., Zhong G. Q.: A universal circuit for studying and generating chaos. Part 1. IEEE Trans. Circuits and Systems (1993), 10, 732–744 | MR | Zbl

[4] Corles M.: Control of uncertain nonlinear systems. ASME J. Dyn. Syst. Meas. Control 115 (1993), 362–372 | DOI

[5] Dubrov A. M., Zuber I. E.: Design of exponentially stable control systems for a range of nonlinear processes. Automat. Remote Control (1989), 8, 33–40 | MR

[6] Fradkov A. L., Pogromsky A. Yu., Markov A. Yu.: Adaptive control of chaotic continuously–time systems. In: Proc. 3rd EC Conference, Roma 1995, pp. 3062–3067

[7] Gaiduk A. R.: Analytical controller design for a class of nonlinear systems. Automat. Remote Control (1993), 3, 22–33

[8] Gaiduk A. R.: Analytical nonlinear control systems design. In: Proc. 3rd EC Conference, Roma 1995, pp. 1503–1505

[9] Jury E. I.: Robustness of discrete systems: A review. In: Proc. 11th IFAC World Congres, Tallin 1990, pp. 184–186 | MR

[10] Konstantopoulos I. K., Antsaklis P. J.: New bounds for robust stability of continuous and discrete–time systems under parametric uncertainty. Kybernetika 31 (1995), 6, 623–636 | MR | Zbl

[11] Kozák Š.: Simple and robust PID controller. Appl. Math. Comput. 70 (1995), 2–8 | DOI

[13] Kučera V., DeSouza C. E.: A necessary and sufficient conditions for output feedback stabilizability. Automatica 31 (1995), 1357–1359 | DOI | MR

[14] Leitman G.: One method for robust control of uncertain systems: Theory and practice. Kybernetika 32 (1996), 1, 43–62 | MR

[15] Niculescu S. I., DeSouza C. E., Dugard L., Dion J. M.: Robust exponential stability of uncertain systems with time–varying delays. In: Proc. 3rd EC Conference, Roma 1995, pp. 1802–1807

[16] Poolla K. S., Shamma J. S., Wise K. A.: Linear and nonlinear controller for robust stabilization problem: A survey. In: Proc. 11th IFAC World Congres, Tallin 1990, pp. 176–183

[17] Prokop P., Corriou J. P.: Design and analysis of simple robust controllers. Internat. J. Control 66 (1997), 6, 905–921 | DOI | MR | Zbl

[18] Gong, Zhiming, Wen, Changyun, Mital, Dinesh P.: Decentralized robust controller design for a class of interconnected uncertain systems: with known or unknown bound of uncertainty. In: Proc. 3rd EC Conference, Roma 1995, pp. 2940–2945 | MR

[19] Qu, Zhihua, Dorsey J.: Robust control by two Lyapunov functions. Internat J. Control 55 (1992), 1335–1350 | DOI | MR | Zbl

[20] Qu, Zhihua: Asymptotic stability of controlling uncertain dynamical systems. Internat. J. Control 59 (1994), 1345–1355 | DOI | MR | Zbl