Keywords: linear time-invariant MIMO system; robust stability; single input single output input-output channels; MIMO uncertainty; ${\cal H}_\infty $-norm
@article{KYB_1998_34_5_a5,
author = {Kov\'acs, G\'abor Z. and Hangos, Katalin M.},
title = {Notes on $\mu$ and $l_1$ robustness tests},
journal = {Kybernetika},
pages = {565--578},
year = {1998},
volume = {34},
number = {5},
mrnumber = {1663740},
zbl = {1274.93218},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a5/}
}
Kovács, Gábor Z.; Hangos, Katalin M. Notes on $\mu$ and $l_1$ robustness tests. Kybernetika, Tome 34 (1998) no. 5, pp. 565-578. http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a5/
[1] Dahleh M. A., Khammash M.: Controller design for plants with structured uncertainty. Automatica 29 (1993), 37–56 | DOI | MR | Zbl
[2] Dahleh M. A., Diaz–Bobillo I. J.: Control of Uncertain Systems. A Linear Programming Approach. Prentice Hall, NJ 1995 | Zbl
[3] Doyle J. C.: Structured uncertainty in control system design. In: Proc. of 24th Conference on Decision and Control, Ft. Lauderdale FL 1985, pp. 260–265
[4] Fiedler M.: Special Matrices and Their Application in Numerical Mathematics. SNTL – Nakladatelství technické literatury, Prague 1981 | Zbl
[5] Khammash M. H., Pearson J. B.: Performance robustness of discrete–time systems with structured uncertainty. IEEE Trans. Automat. Control 36 (1991), 398–412 | DOI | MR | Zbl
[6] Khammash M. H., Pearson J. B.: Analysis and design for robust performance with structured uncertainty. Systems Control Lett. 20 (1993), 179–187 | DOI | MR | Zbl
[7] Khammash M. H.: Necessary and sufficient conditions for the robustness of time–varying systems with applications to sampled–data systems. IEEE Trans. Automat. Control 38 (1993), 49–57 | DOI | MR | Zbl
[8] Packard A., Doyle J. C.: The complex structured singular value. Automatica 29 (1993), 71–109 | DOI | MR | Zbl
[9] Tits A. L., Fan M. K. H.: On the small–$\mu $ theorem. Automatica 31 (1995), 1199–1201 | DOI | MR | Zbl