Notes on $\mu$ and $l_1$ robustness tests
Kybernetika, Tome 34 (1998) no. 5, pp. 565-578 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An upper bound for the complex structured singular value related to a linear time-invariant system over all frequencies is given. It is in the form of the spectral radius of the ${\cal H}_\infty $-norm matrix of SISO input-output channels of the system when uncertainty blocks are SISO. In the case of MIMO uncertainty blocks the upper bound is the $\infty $-norm of a special non-negative matrix derived from ${\cal H}_\infty $-norms of SISO channels of the system. The upper bound is fit into the inequality relation between the results of $\mu $ and $\ell _1$ robustness tests.
An upper bound for the complex structured singular value related to a linear time-invariant system over all frequencies is given. It is in the form of the spectral radius of the ${\cal H}_\infty $-norm matrix of SISO input-output channels of the system when uncertainty blocks are SISO. In the case of MIMO uncertainty blocks the upper bound is the $\infty $-norm of a special non-negative matrix derived from ${\cal H}_\infty $-norms of SISO channels of the system. The upper bound is fit into the inequality relation between the results of $\mu $ and $\ell _1$ robustness tests.
Classification : 93B35, 93C05, 93C35, 93D09
Keywords: linear time-invariant MIMO system; robust stability; single input single output input-output channels; MIMO uncertainty; ${\cal H}_\infty $-norm
@article{KYB_1998_34_5_a5,
     author = {Kov\'acs, G\'abor Z. and Hangos, Katalin M.},
     title = {Notes on $\mu$ and $l_1$ robustness tests},
     journal = {Kybernetika},
     pages = {565--578},
     year = {1998},
     volume = {34},
     number = {5},
     mrnumber = {1663740},
     zbl = {1274.93218},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a5/}
}
TY  - JOUR
AU  - Kovács, Gábor Z.
AU  - Hangos, Katalin M.
TI  - Notes on $\mu$ and $l_1$ robustness tests
JO  - Kybernetika
PY  - 1998
SP  - 565
EP  - 578
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a5/
LA  - en
ID  - KYB_1998_34_5_a5
ER  - 
%0 Journal Article
%A Kovács, Gábor Z.
%A Hangos, Katalin M.
%T Notes on $\mu$ and $l_1$ robustness tests
%J Kybernetika
%D 1998
%P 565-578
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a5/
%G en
%F KYB_1998_34_5_a5
Kovács, Gábor Z.; Hangos, Katalin M. Notes on $\mu$ and $l_1$ robustness tests. Kybernetika, Tome 34 (1998) no. 5, pp. 565-578. http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a5/

[1] Dahleh M. A., Khammash M.: Controller design for plants with structured uncertainty. Automatica 29 (1993), 37–56 | DOI | MR | Zbl

[2] Dahleh M. A., Diaz–Bobillo I. J.: Control of Uncertain Systems. A Linear Programming Approach. Prentice Hall, NJ 1995 | Zbl

[3] Doyle J. C.: Structured uncertainty in control system design. In: Proc. of 24th Conference on Decision and Control, Ft. Lauderdale FL 1985, pp. 260–265

[4] Fiedler M.: Special Matrices and Their Application in Numerical Mathematics. SNTL – Nakladatelství technické literatury, Prague 1981 | Zbl

[5] Khammash M. H., Pearson J. B.: Performance robustness of discrete–time systems with structured uncertainty. IEEE Trans. Automat. Control 36 (1991), 398–412 | DOI | MR | Zbl

[6] Khammash M. H., Pearson J. B.: Analysis and design for robust performance with structured uncertainty. Systems Control Lett. 20 (1993), 179–187 | DOI | MR | Zbl

[7] Khammash M. H.: Necessary and sufficient conditions for the robustness of time–varying systems with applications to sampled–data systems. IEEE Trans. Automat. Control 38 (1993), 49–57 | DOI | MR | Zbl

[8] Packard A., Doyle J. C.: The complex structured singular value. Automatica 29 (1993), 71–109 | DOI | MR | Zbl

[9] Tits A. L., Fan M. K. H.: On the small–$\mu $ theorem. Automatica 31 (1995), 1199–1201 | DOI | MR | Zbl