Keywords: correlation coefficients; Bartlett approximations; simulation studies
@article{KYB_1998_34_5_a3,
author = {And\v{e}l, Ji\v{r}{\'\i} and Antoch, Jarom{\'\i}r},
title = {On {Bartlett's} test for correlation between time series},
journal = {Kybernetika},
pages = {545--554},
year = {1998},
volume = {34},
number = {5},
mrnumber = {1663732},
zbl = {1274.62569},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a3/}
}
Anděl, Jiří; Antoch, Jaromír. On Bartlett's test for correlation between time series. Kybernetika, Tome 34 (1998) no. 5, pp. 545-554. http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a3/
[1] Anděl J.: Modern trends in multivariate time-series analysis. Math. Operationsforsch. Statist., Ser | Zbl
[2] Anděl J.: Statistische Analyse von Zeitreihe.
[3] Bartlett M. S.: Some aspects of the time–correlation problem in regard to tests of significance. J. Roy | Zbl
[5] Goodman L. A., Grunfeld Y.: Some nonparametric tests for comovements between time series. J. Amer. Statist | Zbl
[8] Haugh L. D.: Checking the independence of two covariance stationary time series: a univariate residual cross–correlation approach. J. Amer. Statist. Assoc. 71 (1976), 378–385 | DOI | MR | Zbl
[9] McGregor J. R.: The approximate distribution of the correlation between two stationary linear Markov serie.
[10] McGregor J. R., Bielenstein U. M.: The approximate distribution of the correlation between two stationary linear Markov series II. Biometrika 52 (1965), 301–302 | MR | Zbl
[12] Nakamura A. O., Nakamura M., Orcutt G. H.: Testing for relationships between time series. J. Amer. Statist | Zbl