On Bartlett's test for correlation between time series
Kybernetika, Tome 34 (1998) no. 5, pp. 545-554 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An explicit formula for the correlation coefficient in a two-dimensional AR(1) process is derived. Approximate critical values for the correlation coefficient between two one-dimensional AR(1) processes are tabulated. They are based on Bartlett’s approximation and on an asymptotic distribution derived by McGregor. The results are compared with critical values obtained from a simulation study.
An explicit formula for the correlation coefficient in a two-dimensional AR(1) process is derived. Approximate critical values for the correlation coefficient between two one-dimensional AR(1) processes are tabulated. They are based on Bartlett’s approximation and on an asymptotic distribution derived by McGregor. The results are compared with critical values obtained from a simulation study.
Classification : 62H20, 62M10, 62Q05, 65C60
Keywords: correlation coefficients; Bartlett approximations; simulation studies
@article{KYB_1998_34_5_a3,
     author = {And\v{e}l, Ji\v{r}{\'\i} and Antoch, Jarom{\'\i}r},
     title = {On {Bartlett's} test for correlation between time series},
     journal = {Kybernetika},
     pages = {545--554},
     year = {1998},
     volume = {34},
     number = {5},
     mrnumber = {1663732},
     zbl = {1274.62569},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a3/}
}
TY  - JOUR
AU  - Anděl, Jiří
AU  - Antoch, Jaromír
TI  - On Bartlett's test for correlation between time series
JO  - Kybernetika
PY  - 1998
SP  - 545
EP  - 554
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a3/
LA  - en
ID  - KYB_1998_34_5_a3
ER  - 
%0 Journal Article
%A Anděl, Jiří
%A Antoch, Jaromír
%T On Bartlett's test for correlation between time series
%J Kybernetika
%D 1998
%P 545-554
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a3/
%G en
%F KYB_1998_34_5_a3
Anděl, Jiří; Antoch, Jaromír. On Bartlett's test for correlation between time series. Kybernetika, Tome 34 (1998) no. 5, pp. 545-554. http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a3/

[1] Anděl J.: Modern trends in multivariate time-series analysis. Math. Operationsforsch. Statist., Ser | Zbl

[2] Anděl J.: Statistische Analyse von Zeitreihe.

[3] Bartlett M. S.: Some aspects of the time–correlation problem in regard to tests of significance. J. Roy | Zbl

[5] Goodman L. A., Grunfeld Y.: Some nonparametric tests for comovements between time series. J. Amer. Statist | Zbl

[8] Haugh L. D.: Checking the independence of two covariance stationary time series: a univariate residual cross–correlation approach. J. Amer. Statist. Assoc. 71 (1976), 378–385 | DOI | MR | Zbl

[9] McGregor J. R.: The approximate distribution of the correlation between two stationary linear Markov serie.

[10] McGregor J. R., Bielenstein U. M.: The approximate distribution of the correlation between two stationary linear Markov series II. Biometrika 52 (1965), 301–302 | MR | Zbl

[12] Nakamura A. O., Nakamura M., Orcutt G. H.: Testing for relationships between time series. J. Amer. Statist | Zbl