@article{KYB_1998_34_5_a2,
author = {Witkovsk\'y, Viktor},
title = {Modified minimax quadratic estimation of variance components},
journal = {Kybernetika},
pages = {535--543},
year = {1998},
volume = {34},
number = {5},
mrnumber = {1663728},
zbl = {1274.62477},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a2/}
}
Witkovský, Viktor. Modified minimax quadratic estimation of variance components. Kybernetika, Tome 34 (1998) no. 5, pp. 535-543. http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a2/
[1] Gaffke N., Heiligers B.: Bayes, admissible, and minimax linear estimators in linear models with restricted parameter space. Statistics 20 (1989), 4, 487–508 | DOI | MR | Zbl
[2] Heiligers B.: Linear Bayes and minimax estimation in linear models with partially restricted parameter space. J. Statist. Plann. Inference 36 (1993), 175–184 | DOI | MR | Zbl
[3] Kozák J.: Modified minimax estimation of regression coefficients. Statistics 16 (1985), 363–371 | DOI | MR | Zbl
[4] Kubáček L., Kubáčková L., Volaufová J.: Statistical Models with Linear Structures. Publishing House of the Slovak Academy of Sciences, Bratislava 1995
[5] Pilz J.: Minimax linear regression estimation with symmetric parameter restrictions. J. Statist. Plann. Inference 13 (1986), 297–318 | DOI | MR | Zbl
[6] Pukelsheim F.: Estimating variance components in linear models. J. Multivariate Anal. 6 (1976), 626–629 | DOI | MR | Zbl
[7] Rao C. R.: Estimation of variance and covariance components – MINQUE theory. J. Multivariate Anal. 1 (1971), 257–275 | DOI | MR | Zbl
[8] Rao C. R.: Minimum variance quadratic unbiased estimation of variance components. J. Multivariate Anal. 1 (1971), 445–456 | DOI | MR | Zbl
[9] Rao C. R.: Unified theory of linear estimation. Sankhyā Ser. B 33 (1971), 371–394 | MR | Zbl
[10] Rao C. R., Kleffe J.: Estimation of Variance Components and Applications. Statistics and Probability, Volume 3. North–Holland, Amsterdam – New York – Oxford – Tokyo 1988 | MR | Zbl
[11] Rao C. R., Mitra K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York – London – Sydney – Toronto 1971 | MR | Zbl
[12] Searle S. R., Casella, G., McCulloch, Ch. E.: Variance Components. (Wiley Series in Probability and Mathematical Statistics.) Wiley, New York – Chichester – Brisbane – Toronto – Singapore 1992 | MR | Zbl
[13] Volaufová J.: A brief survey on the linear methods in variance-covariance components model. In: Model–Oriented Data Analysis (W. G. Müller, H. P. Wynn, and A. A. Zhigljavsky, eds.), Physica–Verlag, Heidelberg 1993, pp. 185–196 | MR
[14] Volaufová J., Witkovský V.: Estimation of variance components in mixed linear model. Appl. Math. 37 (1992), 139–148
[15] Zyskind G.: On canonical forms, nonnegative covariance matrices and best and simple least square estimator in linear models. Ann. Math. Statist. 38 (1967), 1092–1110 | DOI | MR