@article{KYB_1998_34_5_a0,
author = {Vajda, Igor and Lonek, Belom{\'\i}r and Nikolov, Viktor and Vesel\'y, Arno\v{s}t},
title = {Neural network realizations of {Bayes} decision rules for exponentially distributed data},
journal = {Kybernetika},
pages = {497--514},
year = {1998},
volume = {34},
number = {5},
mrnumber = {1663720},
zbl = {1274.62645},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a0/}
}
TY - JOUR AU - Vajda, Igor AU - Lonek, Belomír AU - Nikolov, Viktor AU - Veselý, Arnošt TI - Neural network realizations of Bayes decision rules for exponentially distributed data JO - Kybernetika PY - 1998 SP - 497 EP - 514 VL - 34 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a0/ LA - en ID - KYB_1998_34_5_a0 ER -
%0 Journal Article %A Vajda, Igor %A Lonek, Belomír %A Nikolov, Viktor %A Veselý, Arnošt %T Neural network realizations of Bayes decision rules for exponentially distributed data %J Kybernetika %D 1998 %P 497-514 %V 34 %N 5 %U http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a0/ %G en %F KYB_1998_34_5_a0
Vajda, Igor; Lonek, Belomír; Nikolov, Viktor; Veselý, Arnošt. Neural network realizations of Bayes decision rules for exponentially distributed data. Kybernetika, Tome 34 (1998) no. 5, pp. 497-514. http://geodesic.mathdoc.fr/item/KYB_1998_34_5_a0/
[1] Berger J. O.: Statistical Decision Theory and Bayesian Analysis. Second edition. Springer, New York 1985 | MR | Zbl
[2] Brown L. D.: Fundamentals of Statistical Exponential Families. Lecture Notes 9. Inst. of Mathem. Statist., Hayward, California 1986 | MR | Zbl
[3] Bock H. H.: A clustering technique for maximizing $\phi $-divergence, noncentrality and discriminating power. In: Analyzing and Modelling Data and Knowledge (M. Schader, ed.), Springer, Berlin 1992, pp. 19–36
[4] Devijver P., Kittler J.: Pattern Recognition: A Statistical Approach. Prentice Hall, Englewood Cliffs 1982 | MR | Zbl
[5] Funahashi K.: On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989), 183–192 | DOI
[6] Hampel F. R., Rousseeuw P. J., Ronchetti E. M., Stahel W. A.: Robust Statistics: The Approach Based on Influence Functions. Wiley, New York 1986 | MR | Zbl
[7] Hand D. J.: Discrimination and Classification. Wiley, New York 1981 | MR | Zbl
[8] Hornik K., Stinchcombe M., White H.: Multilayer feedforward networks and universal approximation. Neural Networks 2 (1989), 359–366 | DOI
[9] Küchler U., Sørensen M.: Exponential families of stochastic processes: A unifying semimartingale approach. Internat. Statist. Rev. 57 (1989), 123–144 | DOI
[10] Lapedes A. S., Farber R. H.: How neural networks work. In: Evolution, Learning and Cognition (Y. S. Lee, ed.), World Scientific, Singapore 1988, pp. 331–340 | MR
[11] Mood A. M., Graybill F. A., Boes D. C.: Introduction to the Theory of Statistics. Third edition. McGraw–Hill, New York 1974 | Zbl
[12] Müller B., Reinhard J., Strickland M. T.: Neural Networks. Second edition. Springer, Berlin 1995
[13] Ripley B. D.: Statistical aspects of neural networks. In: Networks and Chaos (O. E. Barndorff–Nielsen, J. L. Jensen and W. S. Kendall, eds.), Chapman and Hall, London 1993. pp. 40–123 | MR | Zbl
[14] Vajda I.: About perceptron realizations of Bayesian decisions about random processes. In: IEEE International Conference on Neural Networks, vol. 1, IEEE, 1996, pp. 253–257